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We review level set methods and the related techniques that are common in
many PDE-based image models. Many of these techniques involve minimizing
the total variation of the solution and admit regularizations on the curvature
of its level sets. We examine the scope of these techniques in image science,
in particular in image segmentation, interpolation, and decomposition, and
introduce some relevant level set techniques that are useful for this class of
applications. Many of the standard problems are formulated as variational
models. We observe increasing synergistic progression of new tools and ideas
between the inverse problem community and the ‘imagers’. We show that
image science demands multi-disciplinary knowledge and flexible, but still
robust methods. That is why the level set method and total variation methods
have become thriving techniques in this field.

Our goal is to survey recently developed techniques in various fields of re-
search that are relevant to diverse objectives in image science. We begin by
reviewing some typical PDE-based applications in image processing. In typ-
ical PDE methods, images are assumed to be continuous functions sampled
on a grid. We will show that these methods all share a common feature, which
is the emphasis on processing the level lines of the underlying image. The
importance of level lines has been known for some time. See, e.g., Alvarez,
Guichard, Morel and Lions (1993). This feature places our slightly general
definition of the level set method for image science in context. In Section 2
we describe the building blocks of a typical level set method in the continuum
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setting. Each important task that we need to do is formulated as the solution
to certain PDEs. Then, in Section 3, we briefly describe the finite difference
methods developed to construct approximate solutions to these PDEs. Some
approaches to interpolation into small subdomains of an image are reviewed
in Section 4. In Section 5 we describe the Chan–Vese segmentation algorithm
and two new fast implementation methods. Finally, in Section 6, we describe
some new techniques developed in the level set community.
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1. Level set methods and image science

The level set method for capturing moving fronts was introduced in Osher
and Sethian (1988). (Two earlier conference papers containing some of the
key ideas have recently come to light (Dervieux and Thomasset 1979, 1981).)
Over the years, the method has proved to be a robust numerical device for
this purpose in a diverse collection of problems. One set of problems lies in
the field of image science. In this article, we will emphasize not only what
has been done in image science using level set techniques, but also in other
areas of science in which level set methods are applied successfully – the idea
is to point out the related formulations and solution methods to the image
science communities. These communities include image/video processing,
computer vision, and graphics. These are diverse, with specialities such as
medical imaging and Hollywood-type special effects.

We begin with a quick examination of what constitutes a classical level
set method: an implicit data representation of a hypersurface (codimension
1 object), a set of PDEs that govern how the surface moves, and the corres-
ponding numerical methods for implementing this on computers. In fact,
a typical application in image science will need all these features. We will
illustrate this point with some classical applications.

The term ‘image science’ is used here to denote a wide range of prob-
lems related to digital images. It is generally referred to problems related
to acquiring images (imaging), image processing, computer graphics, and
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computer vision. The type of mathematical techniques involved include
discrete math, linear algebra, statistics, approximation theory, partial dif-
ferential equations, quasi-convexity analysis related to solving inverse prob-
lems, and even algebraic geometry. The role of a level set method often
relates to PDE techniques involving one or more of the following features:
(1) regarding an image as a function sampled on a given grid with the grid
values corresponding to the pixel intensity in suitable colour space, (2) reg-
ularization of the solutions, (3) representing boundaries, and (4) numerical
methods. It is not hard to seek an application of the level set method for
image segmentation or to model obstacles in inverse problems, since bound-
aries and level contours are fundamental objects in image science.

In a later section, we will examine some essential fundamentals of the
level set methodology. We refer the reader to the original paper, Osher and
Sethian (1988), and a new book, Osher and Fedkiw (2002), for detailed ex-
position of the level set method. A set of presentation slides is also available
from the first author’s home page.1

An image is considered as a function u : Ω �→ X, where Ω is typically a
rectangular domain in R

2 and X is some compact space that is determined
by the imaging device; e.g., X = [0, 1] if u is a grey value image, and
X = S1 × [0, 1] if the chromaticity and intensity is used for a colour image.
Unless otherwise noted, we will discuss grey level images here.

We write a typical PDE method as

λLu = Ru, (1.1)

or
ut + λLu = Ru, (1.2)

where L is some operator applied to the given image, λ ≥ 0 is a predeter-
mined parameter, and R denotes the regularization operator. For example,
in the TV deblurring of Rudin and Osher (1994),

Lu = K ∗ (Ku − f),

where K is a compact integral operator, f is the given image, and the
restored image is the limit u(t) as t −→ ∞. When L is not invertible, as in
the above deblurring model, or when a certain regularity is needed in the
image u, a regularization term will be added. In the usual version of total
variation methods, regularization usually appears in a form similar to

Ru =

(

∇ · ∇u

|∇u|

)

. (1.3)

1 http://www.math.princeton.edu/~ytsai
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Typically, equations (1.1) and (1.2) are derived either by directly writing
down some PDEs whose solutions possess the desired properties, or by de-
vising an energy functional E(u) and solving for a minimizer. For example,
the shock filter of Rudin and Osher (1990) and the inpainting algorithm
of Bertalmio, Sapiro, Caselles and Ballester (2000) fall into the first cat-
egory. The variational approaches seem to be the mainstream for many
important problems nowadays, partly owing to the existing mathematical
tools, involving calculus of variations and Γ-convergence, available to study
such kind of models. The Mumford–Shah multiscale segmentation model
(Mumford and Shah 1989) and the total variation (TV) denoising model of
Rudin–Osher–Fatemi (ROF) (Rudin, Osher and Fatemi 1992) are success-
ful variational models. Both models have inspired much research activity in
this field and will be discussed frequently in this article. The ROF model
can be written as

min
u

ETV (u) =
λ

2

∫

(f − u)2 dx +

∫

|∇u|dx, (1.4)

where f is the given noisy image. In this set up, the Euler–Lagrange equa-
tion for (1.4) defines Lu as (u−f), and R = ∇· ∇u

|∇u| , which is the curvature

of the level curve at each point of the image u. We remark that in many
other image applications, the unregularized energy functional is nonconvex,
and its global minimizer corresponds to the trivial solution. Only a local
minimizer is needed. However, in (1.4), we obtain a useful global minimizer.

In the development of this type of method, one often qualitatively studies
the solutions of the governing PDEs by investigating what action occurs
on each of the level sets of a given image. In the TV regularization of
Marquina and Osher (2000), for example, Ru(x) actually denotes the mean
curvature of the level set of u passing through x. The effects of (1.3) in noise
removal can be explained as follows: the level curves in the neighbourhoods
of noise on the image have high curvatures. The level curves of the viscosity
solution to

ut =

(

∇ · ∇u

|∇u|

)

|∇u|

shrink with the speed of the mean curvature and eventually disappear. Con-
sequently, the level curves with very high curvature (noise) disappear much
more rapidly than those with relatively lower curvatures (this helped mo-
tivate the approach taken in Marquina and Osher (2000)). If the |∇u|
term is dropped (as it usually is) the velocity is inversely proportional to
the gradient. This means relatively flat edges do not disappear. The ana-
lysis of motion by curvature and other geometric motions are all important
consequences of viscosity solution theory, originally devised for Hamilton–
Jacobi equations and a wide class of second-order nonlinear equations. The
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Figure 1.1. Image obtained from
http://mountains.ece.umn.edu/~guille/inpainting.htm.

viscosity solution theory describes how evolution extends beyond singular-
ities, including the pinching-off of level curves. Chambolle and Lions (1997)
provide some analysis of the total variation denoising model. See Chen, Giga
and Goto (1991), Crandall, Ishii and Lions (1992) and Evans and Spruck
(1991, 1992a, 1992b, 1995) for more general viscosity theory applied to a
wide class of second order equations.

Another interesting category of applications is data interpolation. In the
problem of inpainting (see, e.g., Bertalmio et al. (2000) and Figure 1.1),
the challenge is to repair images which have regions of missing information.
The algorithms are motivated in part by connecting the level curves over
the ‘inpainting domain’ in an ‘appropriate way’. In a rather orthogonal way,
the AMLE (absolutely minimizing Lipschitz extension) algorithm (see, e.g.,
Caselles, Morel and Sbert (1998)) assumes a given set of level curves of an
image, and fills in the regions in between the given level curves while trying
to minimize the variation of the new data generated.

In many applications such as image segmentation or rendering, level set
methods are used to define the objects of interest. For example, a level set
function is used to single out desired objects such as the land mass of Europe
(Chan and Vese 2001a). The land mass is defined to be the connected
region where the level set function is of one sign (see Figure 1.2). There
are many successful algorithms of this type. Examples also include Chan
and Vese (2001b) and Paragios and Deriche (1997). In a different, but
related, context, Zhao et al. use a level set function to interpolate unorga-
nized data sets (Zhao, Osher, Merriman and Kang 2000, Zhao, Osher and
Fedkiw 2001).

Many of the above methods rely on the variational level set calculus sim-
ilar to that of Zhao, Chan, Merriman and Osher (1996) to formulate the
energies whose minimizers are interpreted as the solution to the problems,
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Figure 1.2. Land mass of Europe found using active contours.

and the solutions are level set functions. In general, the energies are variants
of the surface integral

∫

Ω
F (φ, u)δ(φ)|∇φ|dx,

and the volume integral
∫

Ω
G(φ, u)H(−φ) dx.

See Zhao et al. (1996) for details and definitions. We shall return to this in
a later section on image segmentation.

We notice that in some of the above applications, level set functions are
used to separate the domain into different regions. The interfaces separating
those regions are defined as the zeros of the level set function. The PDEs
that govern the motion of the interface can be derived from a variational
principle. In many other cases, the interface motion is governed by classical
laws of physics. In fact, in the original level set paper (Osher and Sethian
1988), a level set function was used to distinguish burnt and unburnt regions
in flame propagation problems. Fedkiw and collaborators used level set
methods to simulate diverse physical phenomena such as splashing water,
flame propagation, and detonation waves. When the results are rendered
on the screen, they become very effective and realistic rendering of natural
phenomena suitable for special effects in movie productions. The reader
can find a detailed description and references in Osher and Fedkiw (2001).
Figure 1.3 provides two such simulations.
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Figure 1.3. Image obtained from www.cs.stanford.edu/~fedkiw.

Finally, there is a collection of level set numerics, consisting mostly of ap-
proximations to general Hamilton–Jacobi equations and compressible and
incompressible fluid dynamics. These methods are not limited only to pure
level set formulations. They can also be used to solve other PDE-based
image models. The basic numerics started in Osher and Sethian (1988)
and Osher and Shu (1991), and generalizations have been carefully doc-
umented in Osher and Fedkiw (2002). Some new ones can be found in
Enright, Fedkiw, Ferziger and Mitchell (2002), Kao, Osher and Tsai (2002),
Sethian and Vladimirsky (2001), Tsai (2002), Tsai, Cheng, Osher and Zhao
(2003a), Tsai, Giga and Osher (2003b) and Tsitsiklis (1995). Additionally,
we mention Tornberg and Engquist (2003), which addresses the issue of
regularization.

Ideas originating in this type of numerics, for instance, ENO interpolation
(Harten, Engquist, Osher and Chakravarthy 1987), have been used to de-
velop wavelet-based methods which minimize ringing, or Gibbs’ phenomena
at edges (Chan and Zhou 2002).

2. Brief review of the level set method

A significant number of problems in science reduce to the study of the evol-
ution of curves, which are usually the boundaries between different media.
These curves (or interfaces) move according to their own geometries or ac-
cording to the laws of physics associated with the problem. They break
up, merge, or disappear during the course of time evolution. These topo-
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logical changes are problematic for most conventional methods. The level
set method, however, handles these topological changes ‘with no emotional
involvement’ (Osher and Sethian 1988). Since its introduction, there has de-
veloped a powerful level set calculus used to solve a great variety of problems
in fluid dynamics, materials sciences, computer vision, computer graphics,
to name a few topics. We refer to Osher and Fedkiw (2002) for an extens-
ive exposition of the level set calculus. See also Giga (2002) for a related
theoretical exposition.

Typically, one can write a general level set algorithm in three steps enu-
merated below.

(1) Initialize/re-initialize φ at t = tn.

(2) Construct/approximate H(t, x, φ, Dφ, D2φ). (Occasionally higher de-
rivatives also appear for which rigorous viscosity solution theory def-
initely does not apply).

(3) Evolve
φt + H(t, x, φ, Dφ, D2φ) = 0,

for t = tn + ∆t.

For image applications, φ above can either be the image itself (e.g., deblur-
ring applications) or an extra function that is used to process the given
image (e.g., segmentation applications).

We will discuss the key components of the three steps in the following sec-
tions. More precisely, we will follow convention and start our exposition for
step (2). Steps (1) and (3) are implemented by suitable numerical methods
that will be reviewed in the next section.

2.1. Basic formulation

For simplicity, we discuss the conventional level set formulation in two di-
mensions. The interfaces represented by a level set function are thus also
referred to as curves. However, the methodology presented in this section
can be naturally extended to any number of space dimensions. There, the
interface that is represented is generally called a hypersurface (in three di-
mensions, it is simply called a surface). We will use the words interface and
curves interchangeably.

In the level set method, the curves are implicitly defined as the zeros of a
Lipschitz-continuous function φ. This is to say that {(x, y) ∈ R

2 : φ(x, y) =
0} define the embedded curve Γ. In many situations, we will also regard Γ as
the boundary of the sublevel sets Σ = {φ ≤ 0}. See Figures 2.1 and 2.2 for
some examples. If we associate a continuous velocity field v whose restriction
onto the curve represents the velocity of the curve, then, at least locally in
time, the evolution can be described by solving the Cauchy problem

φt + v · ∇φ = 0, φ(x, 0) = φ0(x),
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where φ0 embeds the initial position of the curve. To derive this, let us
look at a parametrized curve γ(s, t) and assume that ∂γ/∂t is the known
dynamics of this curve. If we require that γ(s, t) be the zero of the function
φ for all time, i.e., φ(γ(s, t), t) = 0 for all t ≥ 0, then, at least formally, the
equation

φt +
∂γ

∂t
· ∇φ(γ, t) = 0

is satisfied along γ. Extending ∂γ/∂t continuously to the whole domain will
create the velocity field v.

In general, the velocity v can be a function of position x, t, and some
other geometrical properties of the curve, or of other physical quantities
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Figure 2.1. A circle embedded by different continuous functions.
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that come with the problem. The equation can be written using the normal
velocity:

vn = v · ∇φ

|∇φ| , φt + vn|∇φ| = 0. (2.1)

We note that these equations are usually fully nonlinear first-order Ham-
ilton–Jacobi or second-order degenerate parabolic equations, and in many
cases, the theory of viscosity solutions (Crandall and Lions 1984) can be
applied to guarantee well-posedness of the Cauchy problem.

It is instructive to derive the level set equation via a weak formulation
using the area and co-area formula (Evans and Gariepy 1992). Let w be a
test function, and let vnbe the normal velocity of Γ = ∂Σ = {φ ≤ 0}:

∫

R2

∂φ

∂t
w dx =

d

dt

∫

R2

φw dx = − d

dt

∫

R

∫

{φ(·,t)<η}
w dxdη

= −
∫

R

∫

∂{φ(·,t)<η}
wvn dsdη

= −
∫

R

∫

wvnδ(φ(x) − η)|∇φ(x)|dxdη

= −
∫

R2

vn|∇φ|w dx.

We typically solve the level set equation on a rectangular domain Ω with
Neumann boundary condition on ∂Ω. In general, the level set equations
do not admit classical solutions. However, under appropriate regularity
conditions on vn or H, it is possible to uniquely define a special weak solution
called the viscosity solution (Crandall and Lions 1983, Crandall et al. 1992).
For many equations, the viscosity solution corresponds to the uniform limit

φ > 0

φ > 0

φ < 0

φ < 0

Figure 2.2. Two closed curves that are implicitly embedded
by a single level set function defined on the grid.
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of the vanishing viscosity solution. It can be shown that the motion of
the zero level set of the viscosity solution is a generalization of a smooth
motion in the normal direction, and the motion is uniquely defined if no
fattening occurs; i.e., if {φ = 0} remains a set of measure zero for all
time. We refer the interested readers to Evans (1998) and Giga (2002) for
more information on this aspect of the level set method. Corresponding to
viscosity solution theory, there is a set of simple finite difference methods
to construct approximation solutions (Barles and Souganidis 1991, Crandall
and Lions 1984).

Finally, in the level set formulation, the surface integral of function f
along the zero level set is defined via the surface integral

∫

Rd

f(x)δ(φ)|∇φ|dx.

If f ≡ 1, this integral yields the arc length for curves in two dimensions,
and surface area in three dimensions. Volume integrals are defined as

∫

Rd

f(x)H(φ) dx,

where H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. In Sections 3.8 and 3.9,
we will review the related numerics proposed by Engquist, Tornberg and
Tsai (2004) related to approximating the delta and Heaviside functions.

2.2. Reshaping the level set function

In many situations, the level set function will develop steep or flat gradi-
ents leading to problems in numerical approximations. It is then needed
to reshape the level set function to a more useful form, while keeping the
zero location unchanged. One way to do this is to perform what is called
distance re-initialization (Sussman, Smereka and Osher 1994) by evolving
the following PDE to steady state:

φτ + sgn(φ0)(|∇φ| − 1) = 0, φ(x, τ = 0) = φ0(x). (2.2)

Here φ0 denotes the level set function before re-intialization. If we evolve
the solution to steady state over the computational domain, the solution φ
becomes the signed distance function to the interface {φ0 = 0}. One can
understand the mechanism of this approach from the following scenario: in
the region in which φ0 is positive, φτ < 0 whenever |∇φ| > 1; therefore,
the value of φ will decrease, and consequently, |∇φ| will become closer to
1. Notice that φτ ≡ 0 wherever φ0 ≡ 0, since sgn(0) = 0. See Figure 2.3.
We will come back to issues related to how proper discretizations of the
discontinuous signum function should be carried out in order to achieve
efficiency and accuracy.
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Figure 2.3. Re-initialization.

Another equivalent approach is to solve the eikonal equation

|∇φ| = 1

with the boundary condition φ = 0 on {φ0 = 0}. A common numerical
approach, e.g., Peng, Merriman, Osher, Zhao and Kang (1999a), is to run
distance re-initialization (2.3) with a high-order accurate method for a short
amount of time, so that in a thin tube around {φ0 = 0}, φ is now the distance
function. Then fix the values of φ in this tube as boundary conditions, and
use fast sweeping or fast marching methods to solve the eikonal equations.
We shall discuss the sweeping method in Section 3.7.

We remark that for most applications, the re-initialization is only needed
in a neighbourhood around the zero level set, and the diameter of this
neighbourhood depends on the discretization of the partial derivatives in the
PDE. This implies that only a few time-steps in τ are needed. We also note
that it is important to solve (2.2) using a high-order discretization method.
Otherwise, the location of the original interface will be perturbed noticeably
by numerical error. Finally, re-initialization globally in the computational
domain will prevent new zero contours from appearing. Thus, one needs to
be careful if emergence of new level contours is of interest. In many image
segmentation tasks, this is important, and we shall comment on this in a
later section.

2.3. Extending quantities off the normals of the interface

In many models, one can only derive the interface velocity vn in equation
(2.1) along Γ. It is necessary to create a continuous velocity field defined on
the whole domain Ω, or at least in a tubular neighbourhood of Γ whose re-
striction on Γ agrees with the known interface velocity. One common way to
obtain such a velocity field is to solve the following boundary value problem:

sgn(φ)∇w · ∇φ = 0, with w|Γ = vn, (2.3)
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Figure 2.4. Quantities are extended off the
zero level set in the normal directions.

or equivalently, to solve for the steady state of the time-dependent equation:

wt + sgn(φ)∇w · ∇φ = 0, (2.4)

with any initial data w0 whose restriction on Γ matches vn.
The interpretation of this approach is that vn will be propagated as a

constant along the characteristics of the PDE (2.3), emanating from Γ,
parallel to the surface normals. See Figure 2.4. Fast sweeping (Kao et
al. 2002, Kao, Osher and Qian 2004, Tsai 2002, Tsai et al. 2003a, Zhao 2005)
or fast marching (Tsitsiklis 1995, Sethian 1996) can be used to solve the first
equation while a higher-order accurate Hamilton–Jacobi solver can be used
for the second (Osher and Shu 1991). In the next section, we will briefly
describe some popular discretizations.

2.4. Tracking quantities defined on the fronts using level set method

So far we have described the basic level set method that enables us to move
curves and surfaces normal to themselves by the prescribed velocities. We
have concentrated on describing how the physical location of the curves
and surfaces change. In many applications, including image processing and
computer vision, we need to track quantities that are defined on the surfaces.
In this section, we review some techniques for doing this.

Let f̃ : Γ �→ X denote the quantity defined on Γ, the zero level set of φ,
and f̃ satisfies

f̃t + QΓf̃ = 0, f̃(x, t = 0) = f̃0(x), (2.5)

where QΓ denotes the differential operator on Γ. This equation determines
how f̃ is changing on Γ. Let f : U ⊂ R

d �→ X be a function defined in a
neighbourhood U of Γ, and f |Γ ≡ f̃ . Here R

d is the ambient space of Γ; i.e.,
φ : R

d �→ R, and Γ = {x : φ(x) = 0}. In a typical level set method, instead
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of solving (2.5) directly on Γ, one solves the corresponding PDE in R
d,

ft + Qf = 0,

so that the restriction of f(t) to Γ matches with f̃(t) for t ≥ 0. At this
point, it is natural to ask what Q is, given the QΓ? In many applications,
the form of Q is the centre of the study, and it might be more convenient
to track an alternative quantity g in order to obtain an equation that is
easier to solve. See the recent paper by Jin, Liu, Osher and Tsai (2005b)
for such an example. In the next paragraph, we discuss another example of
this situation.

Assume that we are interested in quantities defined and parametrized on
the surfaces, and we need to know how these quantities redistribute during
the evolution of the surfaces. Harabetian and Osher (1998) introduced a
method for doing this. Let φ denote the level set function that embeds the
surface of interest. The idea is to introduce an auxiliary function ψ such
that (φ, ψ) forms a coordinate system near the zero level set of φ.

Let the family of closed curves Γ(s, t) = (x(s, t), y(s, t)) be parametrized
by s and t. We want to evolve, for example, Γ(s, 0) to time t, by the level
set functions

φ(x(s, t), y(s, t), t) ≡ 0, ψ(x(s, t), y(s, t), t) ≡ s.

However, ψ is not a single-valued function over a closed curve if it is defined
this way. The authors then proposed to evolve the Jacobian

J = det

[

ϕx ϕy

ψx ψy

]

instead of ψ to circumvent this problem. J has to be nonzero and finite
so that we can express (xs, ys) by (−φy, φx)/J. Thus, in order to track the
tangential motion we evolve

Jt + ∇ · (Jv) = 0

in addition to

φt + v · ∇φ = 0.

Finally, we briefly describe the systematic approach that began in Cheng
(2000), and was developed in Bertalmio, Cheng, Osher and Sapiro (2001b)
for solving PDEs on surfaces for image processing and more general applic-
ations. A similar approach was later adopted by Xu and Zhao (2003) to
study surfactants on interfaces that move in time. For simplicity, we assume
the zero level set to be fixed in time.

Consider the surface gradient QΓ = ∇Γ that maps scalar functions defined
on Γ to the tangent bundle of Γ. The key notion is to replace ∇Γ by a
suitable projection of the gradient operator ∇ in R

d. The corresponding
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projection operator is a linear operator defined by

Pv = I − v ⊗ v

|v|2 ,

or equivalently, as a matrix, Pv can be written as

(Pv)ij = δij −
vivj

|v|2 ,

where v is a vector in R
d, and δij is the Kronecker delta function. For x ∈ Γ,

and v the normal of Γ at x, Pv projects vectors onto the tangent plane of Γ
at x.

Recall that Γ = {φ = 0}, and ∇φ is parallel to the normal of Γ. It can be
proved that ∇Γ and P∇φ∇ are equivalent on Γ. Thus, for scalar functions f ,

∇Γf = P∇φ∇f,

and for surface divergence of vector fields F ,

∇Γ · F = P∇φ∇ · F.

Let us illustrate this approach with a few examples. Consider a continuous
function f̃ defined on Γ, a surface in R

3, and a given vector field v defined
on the tangent bundle of Γ. If the zeros of f̃ embed the curve of interest
(call it C) on Γ, then by solving

f̃t + v · ∇Γf̃ = 0,

one obtains the evolution of the curve constrained to the surface. Corres-
pondingly, the extension f of f̃ in R

3 is another level set function, whose
zero level set intersects with that of φ on C, and the corresponding PDE in
R

3 is

ft + v · P∇φ∇f = 0,

or
ft + P∇φv · ∇f = 0.

To perform distance re-initialization on f̃ , one can evolve

fτ + sgn(f0)(|P∇φ∇f | − 1) = 0.

As an example of solving PDEs on surfaces, we consider total variation
diminishing flow of an image u, defined on a surface Γ, takes the form

E(u) =

∫

R3

|P∇φ∇u|δ(φ)|∇φ|dx,

and the corresponding gradient descent equation becomes

ut = P∇φ∇ ·
( P∇φ∇u

|P∇φ∇u|

)

,
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where the right-hand side corresponds to the geodesic curvature, and can
also be written as

∇ ·
( P∇φ∇u

|P∇φ∇u| |∇φ|
)

1

|∇φ| .

The function u is extended outside Γ as described in Section 2.3. For time-
dependent problems, this extension is redone every few time iterations. The
PDE needs to be solved only in a small neighbourhood of Γ, as described
in Peng et al. (1999a).

2.5. Level set methods involving variational approaches

Assume that the energy functional E is an integral operator on u over Σ ⊂
Ω ⊂ R

d,

E(u, Σ) =

∫

Σ
F (u(x)) dx,

and the non-positive region of φ defines Σ; i.e., {φ ≤ 0} = Σ. The key idea
of the variational level set method formulated in Zhao et al. (1996) is that
the above integral can be written as

∫

Σ
F (u(x)) dx =

∫

R2

χΣ(x)F (u(x)) dx =

∫

R2

H(−φ)F (u) dx,

where H is the Heaviside function: H(x) = 1 if x ≤ 0 and H(x) = 0 else-
where. One can then try to find the minimizer φ for this energy. Variational
calculus reveals that that the change in φ on this functional can be quanti-
fied through the boundary integral over ∂Σ = {φ = 0}.

We follow the review of Burger and Osher (2005) and describe how sens-
itivity of this type of energies can be studied in the context of level set
methods.

Level set method and shape calculus

Shape sensitivity analysis is a classical topic in shape optimization, and
defines a natural calculus on shapes. For sufficiently regular shapes (i.e.,
with C1 boundary), there are two equivalent ways of introducing shape sens-
itivities, namely the deformation method and the speed method (Soko�lowski
and Zolésio 1992). Owing to its relation to the level set method, we shall
use the latter as the basis of the following presentation.

Given a set Σ(t) evolving in a velocity field V . Consider an energy E(Σ)
that depends on the shape of Σ. The shape sensitivity of E in the direction
of a perturbation V is then given by

dE(Σ; V ) =
d

dt
E(Σ(t))|t=0.

dE(Σ; ·) is called the shape differential. In the level set framework, Σ(t)
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may be embedded as {φ(·, t) ≤ 0}. Thus the shape sensitivity is

dE(Σ; V ) =
d

dt
E({φ(·, t) ≤ 0})|t=0.

Typically, the energies that appear in the image processing applications are
either volume integrals,

E(Σ) =

∫

Σ
g dx,

or boundary integrals,

E(Σ) =

∫

∂Σ
g dS.

For example, in the former case, direct calculation shows that

d

dt
E(Σ(t))|t=0 =

∫

Rd

gV · ∇φδ(φ) dx =

∫

∂Σ(0)
gVn dS.

The shape derivative is hence related back to the variational level set method
(Zhao et al. 1996). Hence, in a variational level set model, one can choose
many different Vn to decrease E . Different choices of Vn may result in min-
imizing E in different normed spaces. If E is nonconvex, the choice of Vn

and consequently the descent path might lead to different local minimizers.
In many applications involving shape optimization, e.g., image segmenta-

tion, it is desirable to test the sensitivity of the energy function with respect
to topological changes in a given shape. The topological derivative of a shape
Σ with respect to a spherical perturbation at x ∈ Ω (Ω is the computational
domain) is given by

DτE(Σ; x) = lim
R→0

E(Σ \ BR(x)) − E(Σ)

|BR(x)
⋂

Ω| ,

if the limit on the right-hand side exists. Here, BR(x) denotes the closed ball
of radius R centred at x, while dτE(Σ; x) measures the variation with respect
to the nucleation of an infinitesimal hole at x. Thus, if dτE(Σ; x) < 0, then
the nucleation of a hole at x will decrease the objective energy functional.
One can respectively define the topological derivative of the complement
of Σ by

DτE(Σ; x) = lim
R→0

E(Σ
⋃

BR(x)) − E(Σ)

|BR(x)
⋂

Σ| .

In this case, we are interested in the sensitivity of the energy function with
respect to the introduction of a new connected component to the given shape
Σ. One can see the link between the shape derivative and the topological
derivative by evaluating DτE(Σ; x) at ∂Σ.

Burger, Hackl and Ring (2004) successfully incorporate this idea above to
solve a class of shape optimization problems. Their idea is to add dτE(Σ; x)
as a forcing term in the gradient descent.
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Preserving topology
In some applications, one may be interested in preserving the topology of
an given initial zero level set of φ, e.g., in mapping of brain images, or the
optimization of microstructured optical fibres. In particular, one usually
needs to prevent disconnected components of {φ < 0} from merging with
each other when they get close to each other. This is common behaviour for
many level set simulations that compute the viscosity solution (Crandall et
al. 1992).

An automatic way to incorporate this additional property was recently
devised by Alexandrov and Santosa (2005). They proposed adding a penalty
term to the original energy,

H(Σ) = −
∫

∂Σ

(

log(dΣ(x + σ∇dΣ(x)) + log(−dΣ(x − σ∇dΣ(x))
)

ds

for some small constant σ > 0. Here, dΣ denotes the signed distance function
to ∂Σ with dΣ(x) ≤ 0 for x ∈ Σ. Note that for x ∈ Σ, x + σ∇dΣ(x) is a
point projected a distance σ outside Σ, while x−σ∇dΣ(x) is a point that is
projected a distance σ inside Σ. Hence this penalty term forces a minimum
distance of σ between connected components of {dΣ < 0}, and respectively
{dΣ > 0}. Therefore, no topological change can arise. However, this penalty
also indirectly regulates the curvatures of ∂Σ. One can conjure up a scenario
in which the desired shape has many slender fingering components such
that the thickness of each ‘finger’ is less than σ. This added penalty will
unfortunately prevent structures of the type from being computed.

Another more general method developed to prevent merging can be found
in Han, Xu and Prince (2003). This appears to be quite useful in brain
mapping.

2.6. Limitations of the level set methods

The original idea in the level set method is to use the sign of a given function
to separate the given domain into two disjoint regions, and use the continuity
of the level set function near its zero to define the boundary of these disjoint
regions. One realizes that it can be more complicated to extend this idea
to handle non-simple curves, and multiple phases. An equally important
issue is to solve the problem at hand in obtaining reasonable quality without
excessive complexity. We refer the readers to Smith, Solis and Chopp (2002),
Vese and Chan (2002) and Zhao et al. (1996) for level set methods for
multiple phases, Burchard, Cheng, Merriman and Osher (2001) and Osher,
Cheng, Kang, Shim and Tsai (2002a) for higher codimensions, Smereka
(2000) for open curves, and Peng et al. (1999a) and Strain (1999a, 1999b)
for localization. We also refer to Enright et al. (2002) for a hybrid particle
level set method that is designed to lessen the numerical diffusion effect for
some class of problems, particularly two-phase incompressible flows.
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3. Numerics

The numerical solution of conservation laws has been an active field of re-
search for quite some time. The finite difference methods commonly used in
the level set methods (in particular, those related to Hamilton–Jacobi equa-
tions) are developed under the general philosophy of the Godunov procedure
and the nonlinear ENO reconstruction techniques for avoiding oscillations
in calculations. As a result, upwinding and ENO interpolation become the
indispensable parts of the algorithms documented here.

In what follows, we will first describe the Godunov procedure in the con-
text of solving conservation laws and Hamilton–Jacobi equations. We will
also describe the ENO interpolation and compare the differences between
its usage in conservation laws schemes and in Hamilton–Jacobi solvers. We
refer the details to the book of Osher and Fedkiw (2002) and the extens-
ive references therein. (For simplicity of exposition, we again restrict our
discussion to two space dimensions.)

Let us introduce some notations that we shall use in this section. Let φn
i,j

denote the value of xi,j = (x0 + i∆x, y0 + j∆y) ∈ Ω at time tn = t0 + ∆t.
We shall assume that ∆x = ∆y.

Definition 3.1. (Finite difference operators) Given the values of u
on the grid we first define the forward and backward difference operators,

D±
x ui,j := ±ui±1,j − ui,j

∆x

and

D±
y ui,j := ±ui,j±1 − ui,j

∆y
,

and the central difference operators,

D0
xui,j :=

ui+1,j − ui−1,j

2∆x

and

D0
yui,j :=

ui,j+1 − ui,j−1

2∆y
.

3.1. The Godunov procedure

The Godunov procedure (Godunov 1959) developed for conservation laws
begins by regarding grid values as cell averages of the solution at time tn.
We then ‘build’ a piecewise constant function whose value in each cell is
the cell average. We solve the Riemann problem at cell boundaries ‘exactly’
for an appropriate time-step ∆t. This involves following the characteristics
and making sure that the Rankine–Hugoniot and entropy conditions are
satisfied. Finally, we average the function at t = tn + ∆t in each cell, and
repeat the above steps.
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In the context of certain conventional Hamilton–Jacobi equations, piece-
wise constant cell averages are replaced by a piecewise linear function that
is continuous at the cell boundaries, and point values are updated. This is
described in Bardi and Osher (1991) and Osher and Sethian (1988).

In high-order schemes, cell averages are replaced by more accurate non-
oscillatory reconstruction on the functions or the fluxes. We perform this
reconstruction by ENO/WENO methods.

3.2. ENO/WENO interpolation

We want to approximate the value of the function f in the interval Ii :=
[xi− 1

2
, xi+ 1

2
], using the given values (or averaged values) of f on the grid

nodes xi and its neighbours. Two commonly used methods to get a kth-
order approximation of f in Ii are spectral interpolation, e.g., based on Four-
ier expansions, and fixed-order polynomial interpolation. Both approaches
produce oscillations near the jumps in the function values or their derivat-
ives. We will not comment on the Fourier-based methods since they are not
particularly useful in this connection. Conventional polynomial interpola-
tions usually use the function values on all the grid points within a certain
fixed distance from xi, regardless of the smoothness of the interpolated func-
tion. ENO interpolation, on the other hand, is a nonlinear procedure that
is built on a ‘progression’ of Newton’s divided differences. By ‘progression’,
we mean that the procedure starts by building a linear reconstruction of f in
Ii using either f(xi) and f(xi−1) or f(xi) and f(xi+1), depending on which
pair of values will give a smoother reconstruction. Suppose the reconstruc-
tion from f(xi) and f(xi−1) is selected; we then carry out the reconstruction
using the values of f on either xi−2, xi−1, xi or xi−1, xi, xi+1. This procedure
is iterated until the desired order of approximation is achieved. Newton’s
interpolation is natural in this framework, since one can incrementally com-
pute the divided differences for interpolation. In addition, we can use the
values of the divided differences as an indicator of the smoothness of the
functions in the intervals formed by the grid points that are considered as
possible points in the stencil.

For conservative schemes approximating conservation laws, this ENO re-
construction is performed on the flux function f or the cell averages ū by
first reconstructing the integral of the solution u. For Hamilton–Jacobi
equations, we perform the ENO reconstruction on the solution u.

In the ENO reconstruction procedure, only one of the k candidate stencils
(grid points used for the construction of the scheme) covering 2k − 1 cells
is actually used. If the function is smooth in a neighbourhood of these
2k − 1 cells, we can actually get a (2k − 1)th-order approximation if we use
all these grid values. This is the idea behind the WENO reconstruction.
In short, WENO reconstruction uses a convex linear combination of all
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the potential stencils. The weights in the combination are determined so
that the WENO reconstruction procedure behaves like ENO near discon-
tinuities. As a result, WENO method use smaller stencils to achieve the
same order of accuracy as ENO in smooth regions. Currently, our choice
of scheme is fifth-order WENO. For details, we refer to the original papers
by Engquist, Harten and Osher (1987), Harten et al. (1987), Jiang and
Peng (2000) and Liu, Osher and Chan (1994), and the review article by
Shu (1997). Recently, Balsara and Shu (2000) developed even higher-order
WENO reconstructions.

There are successful adaptations of this ENO idea/philosophy to other
frameworks. See Chan and Zhou (1999, 2002) for ENO wavelet decomposi-
tions for image processing, and Cockburn and Shu (1989) for an application
of the ENO philosophy in discontinuous Galerkin methods.

3.3. Numerics for equations with Hamiltonians H(x, u, p) nondecreasing
in u

We repeat here that any discussion of the numerical schemes cannot be
detached from the solution theory of the equations in questions. This is
especially important for nonlinear hyperbolic equations, since, in general,
discontinuities in the function values or in the derivatives develop in finite
time. We are usually seeking a particular type of weak solution.

Crandall and Lions (1983) introduced viscosity solution theory for a
class of Hamilton–Jacobi equations requiring Lipschitz-continuous initial
data and for which the Hamiltonian H(x, u, p) is Lipschitz-continuous and
non-decreasing in u. Later, in Crandall and Lions (1984), they proved
the convergence to the viscosity solution of monotone, consistent schemes
for Hamilton–Jacobi equations with H independent of x and u. Sougan-
idis (1985) extended the results to include variable coefficients. Osher and
Sethian (1988) contributed to the numerics of Hamilton–Jacobi equations
in their level set paper. This was later generalized and completed in the
paper by Osher and Shu (1991), in which they provided a family of nu-
merical Hamiltonians related to the ENO schemes for conservation laws.
WENO schemes using the numerical Hamiltonians described in Osher and
Shu (1991) were introduced in Jiang and Peng (2000). The method of lines
using TVD Runge–Kutta time discretization is used (Shu and Osher 1988).
We first discretize the spatial derivatives and compute the appropriate ap-
proximation to the Hamiltonians,

Ĥ(p−, p+; q−, q+),

with p±, q± representing the left/right approximations of the derivatives,
obtained from ENO/WENO reconstruction of the solution. They are higher-
order versions of the forward and backward divided differences of the
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grid functions:

p± ∼ D±
x ui,j := ±ui±1,j − ui,j

∆x
,

and

q± ∼ D±
y ui,j := ±ui,j±1 − ui,j

∆y
.

3.4. The Lax–Friedrichs schemes for the level set equation

Following the methods originally conceived for HJ equations φt+H(Dφ) = 0
in Osher and Shu (1991) (see also Osher and Sethian (1988)), and sup-
pressing the dependence of H on x and y, we recommend using the Local
Lax–Friedrichs (LLF) numerical Hamiltonian:

ĤLLF (p+, p−, q+, q−) = H

(

p+ + p−

2
,
q+ + q−

2

)

(3.1)

− 1

2
αx(p+, p−)(p+ − p−) − 1

2
αy(q+, q−)(q+ − q−),

for the approximation of H. In the above scheme,

αx(p+, p−) = max
p∈I((p+,p−),C≤q≤D

|Hφx
(p, q)|,

αy(q+, q−) = max
q∈I((q+,q−),A≤p≤B

|Hφy
(p, q)|,

I(a, b) = [min(a, b), max(a, b)],

and p±, q± are the forward and backward approximations of φx and φy re-
spectively, and the intervals [A, B] and [C, D] are a priori bounds of φx and
φy. This Hamiltonian is used together with ENO or WENO interpolation
to obtain higher-order methods.

3.5. Curvature

In many applications, the mean curvature term

∇ · ∇φ

|∇φ| or ∇ · ∇u

|∇u|
for the level set function φ or the image function u appears as a regular-
ization. We will use u in our following discussion. This term is usually
approximated by finite differencing centred at each grid point. For conveni-
ence, let (nx

i,j , n
y
i,j) denote the values of ∇u/|∇u|ǫ at the grid point xi,j , and

∇u/|∇u|ǫ is a smooth approximation of ∇u/|∇u|. (This avoids the issue of
singularity at |∇u| and is useful for numerical computations.) A popular
choice would be |∇u|ǫ = (|∇u|2 + ǫ2)1/2, 0 < ǫ ≪ 1. Under these settings,
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the curvature κi,j is approximated by

κǫ
i,j :=

nx
i+1/2,j − nx

i−1/2,j

∆x
+

ny
i,j+1/2 − ny

i,j−1/2

∆y
,

and

nx
i±1/2,j :=

D±
x ui,j

√

(D±
x ui,j)2 + D0

y(S
±
x ui,j)2 + ǫ2

,

nǫ
i,j±1/2 :=

D±
y ui,j

√

D0
x(S±

y ui,j)2 + (D±
y ui,j)2 + ǫ2

,

where

S±
x ui,j =

ui±1,j + ui,j

2
and S±

y ui,j =
ui,j±1 + ui,j

2

are the averaging operators in the x and y direction. In practice, we choose
ǫ to be the same scale as the mesh size.

It is important to point out that one can not prove convergence to the
viscosity solution from this discretization using ǫ = a∆x+b∆y, for two fixed
nonnegative constants a and b. However, in practice, this approximation
seems to work well. To be safe, we recommend taking ǫ = O(∆xp, ∆yp)
for 0 < p < 1. A general approximation theory for this type of degenerate
elliptic or parabolic equations is outlined by Barles and Souganidis (1991).
Following this theory, a numerical discretization needs to be monotone,
consistent and stable in order to achieve convergence. Recently, Oberman
proposed a convergent numerical discretization for the mean curvature term
on two-dimensional Cartesian grids (Oberman 2004). In his work, an extra
degree of freedom is introduced: the curvature term is not only discretized
with ∆x and ∆y, but also with ∆θ, which is the angle between two adjacent
vectors formed by the grid points in the stencil. The last term discretizes
the angle of the normal of the level sets of u. Hence, the resulting scheme
enlarges the stencil as one refines the grid, which makes it a bit impractical.

3.6. Time discretization

From the previous subsections, we know how to discretize the terms in-
volving spatial derivatives. What remains is to discretize in time in order
to evolve the system; i.e., we need to solve the following ODE system:

∂

∂t
φi,j = −H̃(φi−1,j , φi+1,j , φi,j , φi,j−1, φi,j+1),

where H̃ is the numerical approximation of H(x, φ, Dφ, D2φ). For example,
if we use local Lax–Friedrichs for H(φx, φy), and forward Euler for time, we
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end up having

φn+1
i,j = φn

i,j − ∆t HLLF (xi, yj , D
x
+φn

i,j , D
x
−φn

i,j , D
y
+φn

i,j , D
y
−φn

i,j). (3.2)

Typically, we use the third-order TVD Runge–Kutta scheme of Shu and
Osher (1988), or the fourth-order schemes of Spiteri and Ruuth (2005) to
evolve the system, since higher-order accuracy can be achieved while using
larger time-steps. To keep this description self-contained, we describe the
third-order TVD RK scheme below. We wish to advance ut = L(u) from
tnto tn+1:

(1) u1 = un + ∆t · L(un);

(2) u2 = 3
4un + 1

4u1 + 1
4∆t · L(u1);

(3) un+1 = 1
3un + 2

3u2 + 2
3∆t · L(u2).

3.7. Algorithms for constructing the distance function

In the following subsections, we review some of the solution methods for the
eikonal equation:

|∇u| = r(x, y), u|Γ = 0.

We present a fast Gauss–Seidel-type iteration method which utilizes a mono-
tone upwind Godunov flux for the Hamiltonian. We show numerically that
this algorithm can be applied directly to equations of the above type with
variable coefficients.

Solving eikonal equations
In geometrical optics (Keller 1962), the eikonal equation

√

φ2
x + φ2

y = r(x, y) (3.3)

is derived from the leading term in an asymptotic expansion

eiω(φ(x,y)−t)
∞

∑

j=0

Aj(x, y, t)(iω)−j

of the wave equation

wtt − c2(x, y)(wxx + wyy) = 0,

where r(x, y) = 1/|c(x, y)|, is the function of slowness. The level sets of the
solution φ can be thus be interpreted as the first arrival time of the wave
front that is initially Γ. It can also be interpreted as the ‘distance’ function
to Γ.

We first restrict our attention to the case in which r = 1. Let Γ be a closed
subset of R

2. It can be shown easily that the distance function defined by

d(x) = dist(x,Γ) := min
p∈Γ

|x − p|, x = (x, y) ∈ R
2
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is the viscosity solution to equation (3.3) with the boundary condition

φ(x, y) = 0 for (x, y) ∈ Γ.

Rouy and Tourin (1992) proved the convergence to the viscosity solution
of an iterative method solving equation (3.3) with the Godunov numerical
Hamiltonian approximating |∇φ|. They also noticed that the Godunov
numerical Hamiltonian can be written in the following simple form for this
eikonal equation:

HG(p−, p+, q−, q+) =
√

max{p+
−, p−+}2 + max{q+

−, q−+}2, (3.4)

where p± = Dx
±φi,j , q± = Dy

±φi,j , and x+ = max(x, 0), x− = −min(x, 0).
The task is then to solve

HG = 1

on the grid.
Osher (1993) provided a link to the time-dependent eikonal equation by

proving that the t-level set of φ(x, y) is the zero level set of the viscosity
solution of the evolution equation at time t

ψt + |∇ψ| = 0

with appropriate initial conditions. In fact, the same is true for a very
general class of Hamilton–Jacobi equations (see Osher (1993)). As a con-
sequence, one can try to solve the time-dependent equation by the level set
formulation (Osher and Sethian 1988) with high-order approximations to
the partial derivatives (Osher and Shu 1991, Jiang and Peng 2000). Cran-
dall and Lions (1984) proved that the discrete solution obtained with a
consistent, monotone Hamiltonian converges to the desired viscosity solu-
tion.

Tsitsiklis (1995) combined heap sort with a variant of the classical Dijk-
stra algorithm to solve the steady state equation of the more general problem

|∇φ| = r(x).

This was later rederived in Sethian (1996) and Helmsen, Puckett, Colella
and Dorr (1996). It has become known as the fast marching method, and has
complexity O(N log N), where N is the number of grid points. Osher and
Helmsen (2005) have extended the fast marching type method to somewhat
more general Hamilton–Jacobi equations. Since the fast marching method
is by now well known, we will not give details here on its implementation in
this paper.

The sweeping idea

Danielsson (1980) proposed an algorithm to compute Euclidean distance
to a subset of grid points on a two-dimensional grid by visiting each grid
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node in some predefined order. Boué and Dupuis (1999) suggested a similar
‘sweeping’ approach to solve the steady state equation which, experiment-
ally, results in a O(N) algorithm for the problem at hand. This ‘sweeping’
approach has recently been used in Tsai (2002) and Zhao et al. (2000) to
compute the distance function to an arbitrary data set in computer vision.
Zhao (2005) proved that the fast sweeping algorithm achieves reasonable
accuracy in a (small) finite number of iterations independent of grid size.
Using this ‘sweeping’ approach, the complexity of the algorithms drops from
O(N log N) in the fast marching to O(N), and the implementation of the
algorithms becomes a bit easier than the fast marching method in that no
heap sort is needed.

This sweeping idea is best illustrated by solving the eikonal equation in
[0, 1]:

|ux| = 1, u(0) = u(1) = 0.

Let ui = u(xi) be the grid values and x0 = 0, xn = 1. We then solve the
discretized nonlinear system

√

max(max(D−ui, 0)2, min(D+ui, 0)2) = 1, u0 = un = 0 (3.5)

by our sweeping approach. Let us begin by sweeping from −1 to 1, i.e., we
update ui from i = 0 increasing to i = n. This is ‘equivalent’ to following

the characteristics emanating from x0. Let u
(1)
i denote the grid values after

this sweep. We then have

u
(1)
i =

{

i/n, if i < n,

0, if i = n.

In the second sweep, we update ui from i = n decreasing to 0, using u
(1)
i .

During this sweep, we follow the characteristics emanating from xn. The
use of (3.5) is essential, since it determines what happens when two char-
acteristics cross each other. It is then not hard to see that after the second
sweep,

ui =

{

i/n, if i ≤ n/2,

(n − i)/n, otherwise.

Thus, to update uo, one only uses the immediate neighbouring grid val-
ues and does not need the heap sort data structure. More importantly,
the algorithm follows the characteristics with certain directions simultan-
eously, in a parallel way, instead of a sequential way as in the fast marching
method. The Godunov numerical Hamiltonian is essential in the algorithm
as described here, since it determines what neighbouring grid values should
be used to update u on a given grid node o. At least in the examples
presented, we only need to solve a simple quadratic equation and run some
simple tests to determine the value to be updated. This simple procedure
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is performed in each sweep, and solution is obtained after a few sweeps.
For sweeping applied to very general class of Hamilton–Jacobi equations,
we recommend the simple and versatile Lax–Friedrichs method, which we
mention in Section 3.7 below. See Kao et al. (2004) for details.

Generalized closest point algorithms

In this subsection, we describe an algorithm that can be applied for con-
structing a level set implicit representation for a surface which is defined
explicitly. It can also be used to extend the interface velocity to the whole
computational domain.

In the spirit of the Dynamic Surface Extension of Steinhoff, Fang and
Wang (2000), we can define functions that map each point in R

3 to the
space of (local) representations of surfaces (previously referred to as surface
elements). We can further define the distance between a point P and a
surface element S by

dist(P,S) := min
y∈S

(P, y).

The ‘surface element’ can be, for example, the tangent plane, the curvature,
or a NURB description of the surface.

Instead of propagating distance values away from the interface, we propag-
ate the surface element information along the characteristics and impose
conditions that enforce the first arrival property of the viscosity solution to
the eikonal equation. The challenge is to compute the exact distance from a
given surface element and to derive the ‘upwinding’ criteria for propagating
the surface information throughout the grids.

Given a smooth parametrized surface Υ : Is × It �→ R
3, our algorithm

provides a good initial guess for Newton’s iterations on the orthogonality
identity:

F (s∗, t∗; x) =

(

(x − Υ(s∗, t∗)) · Υs(s∗, t∗)
(x − Υ(s∗, t∗)) · Υt(s∗, t∗)

)

= 0,

where Υ(s∗, t∗) is the closest point on the surface to x. The initial guess in
this case is simply the closest point of the neighbours of x.

Let W denote the function that maps each point in space to its closest
surface element on S. We can then write the algorithm as follows.

Algorithm. Let u be the distance function on the grids, and W be the
corresponding generalized closest point function.

(1) Initialize: give the exact distance to u, and the exact surface elements
to W at grids near Γ. Mark them so they will not be updated. Mark
all other grid values as ∞.

(2) Iterate through each grid point E with index (i, j, k) in each sweeping
direction or according to the fast marching heap sort.
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(3) For each neighbour Pl of E, compute utmp
l = dist(E, W (Pl)).

(4) If dist(E, W (Pl)) < mink u(Pk), set utmp
l = ∞. This is to enforce the

monotonicity of the solution.

(5) Set u(E) = minl u
tmp
l = utmp

λ and W (E) = W (Pλ).

This procedure can be used, e.g., to convert triangulated surfaces to implicit
surfaces.

In general, if only the level set function is available, one can construct a
suitable interpolant of the level set function and try to compute the closest
points. This was proposed in Chopp (2001), where a bicubic interpolation
of the level set function is constructed and Newton’s method is used to find
the closest points on the zero level set of the interpolant.

Further generalizations
For further generalizations of the sweeping method to solve more complic-
ated Hamilton–Jacobi equations, such as those which arise in computing
distance on a manifold,

H(ux, uy) =
√

au2
x + bu2

y + 2cuxuy = r(x, y), for a, b > 0, ab > c2,

and the equations using Bellman’s formulae for convex Hamiltonians, we
refer readers to the recent papers by Tsai et al. (2003a) and Kao et al.
(2002). Recently, a simple sweeping algorithm, based on the Lax–Friedrichs
scheme (3.1), has been shown to work in great generality (Kao et al. 2004).
Special conditions at the grid boundaries must be enforced in order for this
central scheme to compute the correct solution. Accurate estimates of the
bounds on the partial derivatives of the Hamiltonian increase the resolution
and the efficiency of this algorithm. The main advantage of this algorithm is
in the ease of implementation, especially for equations involving complicated
and nonconvex Hamiltonians.

Higher-resolution sweeping methods have also been devised (Zhang, Zhao
and Qian 2004). Essentially, the idea is to reconstruct the derivatives of the
solution using the grid values that have been updated as a correction in
the new approximation. The higher-order approximations of the derivatives
require a larger stencil, leading to a larger numerical domain of dependence;
together with the non-monotonicity in the reconstruction, more iterations
are needed for convergence to the discretized nonlinear system. The com-
plexity of these algorithms is still an open question. Nevertheless, it seem
to be lower than that of a straightforward time marching to steady state.

3.8. Discretization of delta functions supported along the zero level set

In the level set formulation, the evaluation of a surface integral along the
zero level set of φ requires singular integrals involving Dirac delta func-
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tions. Careless quadratures for this type of integrals might lead to error
that prevents convergence (Tornberg and Engquist 2003). Here we review
the approaches proposed by Engquist et al. (2004).

Let s be a parametrization of Γ and let ds be the corresponding surface
area measure. Define δ(Γ, x), x ∈ R

d as a delta function supported on Γ
such that

∫

Rd

δ(Γ, x) f(x) dx =

∫

Rd

f(x)δ(φ(x))|∇φ(x)|dx =

∫

Γ
f(X(s)) ds, (3.6)

where X(s) ∈ Γ. The following techniques are based on replacing the distri-
bution function δ by a class of continuous functions δε in the approximation
of integral defined in (3.6), and replacing the integral over the domain by
a Riemann sum. δε is chosen to be the linear hat function that has two
discrete moments:

δL
ε (x) =

{

1
ǫ (1 − |xǫ |), 0 ≤ |x| ≤ ε,

0, |x| > ε.
(3.7)

Here, discrete moments of a function are defined in analogy to the usual no-
tion of moments at continuous level; δε is said to have q discrete moments if

h
∞

∑

j=−∞
δε(xj − x̄)(xj − x̄)r =

{

1, r = 0,

0, 1 ≤ r < q,
(3.8)

for any x̄ ∈ R, and grid points {xj}. It is shown in Tornberg (2002) and
Tornberg and Engquist (2003) that the overall approximation is of first order
in h if ε =

√
h. For a very narrow support, such as ǫ = C0h, the δε function

is not sufficiently resolved and the error must instead be analysed directly
by taking into account discrete effects of the computational grid.

Engquist et al. (2004) proposed two regularized delta functions built from
the linear hat function (3.7). One is the product formula, following Peskin
(2002), that requires explicit parametrization of Γ:

δε(Γ, x) =

∫

Γ

d
∏

k=1

δεk
(x(k) − X(k)(s)) ds. (3.9)

Here δεk
corresponds to the one-dimensional regularized δ function, and

X(s) = (X(1)(s), . . . , X(d)(s)) is a point on Γ. The other method is the
level set formulation

δε(Γ, x) = δε(φ(x))|∇φ(x)|.
Both approaches use a pointwise variable regularization parameter depend-
ent on the gradient of the level set function; i.e., ǫ = ǫ(x, φx, φx). The
authors showed that with these approaches and with δL

ε as the building
block, it is possible to approximate the singular integrals (3.6) on a uniform
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Cartesian grid with at least first-order accuracy in h, while keeping min-
imum support (with |ǫ(x,∇φ)| ≤ Ch). The first approach seems to yield
approximations that are second-order accurate if φ is the distance function
to Γ. We refer readers to Engquist et al. (2004) for the explicit formula
derived from their first approach. We describe their second approach here
owing to its simplicity. In short, δ(φ(x)) is approximated pointwise by

δL
ε(x,∇φ)(φ(x)),

where

ǫ(x,∇φ) = h|∇φ(x)|ℓ1 , (3.10)

and |∇φ(x)|ℓ1 =
∑d

j=1 |φxj
|.

3.9. Regularization of characteristic functions

In the level set method, the average of a function g over the set {φ ≥ 0}
translates to an integral involving the Heaviside function:

∫

Ω
g(x)H(φ(x)) dx.

Following the discussion in the previous subsection, one can regularize the
Heaviside function by

Hǫ(x) =











1, x ≥ ǫ,
1
2(1 + x

ǫ ), |x| < ǫ,

0, x ≤ −ǫ,

(3.11)

with the same type of pointwise scaling:

ǫ(x,∇φ) =
h

2
|∇φ(x)|ℓ1 .

It can be shown that the resulting approximation to the volume integral is
second-order accurate in the mesh size h.

The signum function used in equation (2.2) is discontinuous:

sgn(z) =











1, x > 0,

0, x = 0,

−1, x < 0,

and may introduce grid effects when discretized improperly on the grid.
Ideally, a smooth monotone function that passes through zero should re-
place the signum function, since we only care about the direction of the
characteristics and the steady state of the solution in a neighbourhood of
its zero level set. With a bounded smooth function such as

tanh(γ0x), γ0 > 0
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the accuracy of the solution to (2.2), for smooth zero level set, is then
determined by the order of the discretization. However, the characteristics
emanate from the zero level set at a speed that is 0 at the interface and
smoothly increases as the bicharacteristics are getting farther away. On
a grid with N grid points, this usually implies that the number of time-
steps needed for steady state on this grid is proportional to N. In many
applications, one is only interested in a thin band of width C/N around the
zero level set. Therefore, if other operations involve O(N) operations, this
regularization might be an attractive option. (See Section 2.2.)

4. Image interpolation

Consider an old photo with scratches. One can try to restore the original
photo by filling in the scratched regions with certain values so that the over-
all image looks ‘right’. This is a complicated interpolation problem. The
main difficulties are as follows.

(1) The interpolation domain may be non-simply connected and have ir-
regular boundaries.

(2) The interpolation procedure must allow discontinuities along some
meaningful geometrical structures.

(3) Ultimately, the interpolation result is subject to human psycho-visual
inspection.

Classically, (2) and (3) relate to the discussion of the function space to
which images belong and which norm should be used. A severe problem
would be that the interpolation domain is too large so that one essentially
has to ‘generate’ new information.

In this article, we will call the problem of interpolating over ‘narrow’
domains the inpainting problem, and the other the ‘disocclusion’ problem.
Essentially, interpolation algorithms rely on the regularity of certain suitable
quantities. Considering grey-scale images, a natural quantity of considera-
tion would be the level lines of the given image functions. One would think
of properly connecting the level lines from a neighbourhood of the inpaint-
ing domain into it. Pioneering works of importance to this area are Caselles
et al. (1998) and Masnou and Morel (1998).

Bertalmio et al. (2000) proposed an algorithm designed to project the
gradient of the smoothness of the image intensity in the direction of the
image level lines. The resulting model is a third-order PDE,

ut = ∇⊥u · ∇(∆u),

where u is the image intensity, and ∇⊥ denotes the differential operator
(−∂y, ∂x) and ∆ is the standard Laplacian operator. At steady state,

∇⊥u · ∇(∆u) = 0



540 Y.-H. R. Tsai and S. Osher

inside the inpainting domain, implying that the gradient of ∆u has to be
perpendicular to the level line of u. In other words, the image value u is
convected along the level curves of the quantity ∆u. Later, Bertalmio, Ber-
tozzi and Sapiro (2001a) established the connection of the image intensity
u in this model to the stream function in a 2D incompressible fluid, where
∆u can be interpreted as the vorticity of the fluid.

Chan and Shen proposed a variational model for inpainting:

Jλ[u] =

∫

E
S

D
|∇u|dx + λ

∫

E
|f − u|2 dx. (4.1)

Here, E is the region which is not to be interpolated, and D is the region
with missing data. Imposing Neumann boundary condition at the boundary
of E

⋃

D, the gradient equation is

ut = ∇ ·
( ∇u

|∇u|

)

− χE(x)λ(u − f), for x ∈ E
⋃

D,

where χE is the characteristic function of E. One immediately sees the clear
connection to the TV denoising model 1.4. This algorithm interpolates a
given image so that the total variation in the inpainting domain is min-
imized. A mental application of the co-area formula reveals that the level
lines stemming from E are connected in D with minimal arc lengths. This
algorithm performs denoising and inpainting simultaneously.

The models that we have just described use the regularity of some local
geometrical quantities for interpolation over the inpainting regions. In real-
ity, the human vision may use more global quantities of a given image for
judging whether any particular inpainting algorithm generates suitable solu-
tions. One good test is to see how an inpainting algorithm connects the
missing boundaries of a given set of shapes; whether a straight horizontal
bar will be reconnected from the image with its middle part removed; or
where a curved boundary can be restored. Therefore, many current efforts
in devising new inpainting algorithms or in comparing different algorithms
concentrate on this aspect. Of course, it is also possible to propose an in-
painting model that is based on the regularity of statistical properties of a
given image or images, especially when inpainting textures.

There have been efforts to incorporate more global quantities for inpaint-
ing. For example, Chan, Kang and Shen (2002) and Esedoglu and Shen
(2002) replaced the total variation term in (4.1) by Euler’s elastica:

e(Γ) =

∫

Γ
(α + βκ2) ds = α length(Γ) + β

∫

Γ
κ2 ds.

Figure 4.1 shows an inpainting result from Esedoglu and Shen (2002).
In Bertalmio, Vese, Sapiro and Osher (2003), texture is first separated

from a given image (described in Section 6.1), leaving a ‘cartoon’-like
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A noisy image to be inpainted. Inpainting via Mumford−Shah−Euler image model

Figure 4.1. This is an inpainting result
from Esedoglu and Shen (2002).

component of the original image. A statistical approach is adopted to ‘syn-
thesize’ texture for the inpainting domain so that some statistical regularity
across the whole image is maintained. After the separation of texture, an
inpainting procedure based on local geometric regularity can be performed
on the remaining cartoon-like image. Finally, the inpainting is done by
putting the synthesized texture together with the cartoon inpainting res-
ult. See also Ballester, Bertalmio, Caselles, Sapiro and Verdera (2001) and
Ballester, Caselles and Verdera (2003) for related work in inpainting and
disocclusion. It is also possible to ‘inpaint’ in the time-frequency domain
with a regularity constraint on the spatial domain. See, e.g., Chan, Shen
and Zhou (2004).

Finally, the level set method has also been used for interpolation of unor-
ganized points, curves and/or surface patches by Zhao et al. (2000, 2001).
Briefly, one finds a level set function whose zero level set passes through a
given unorganized set S. The unsigned distance function dS to the data set
is used for fast visualization and analysis. This distance function can be ef-
ficiently constructed using the generalized closest point algorithm described
in Section 3.7. Then a minimal surface/convection-type model, resembling
geodesic snakes, is used for shape reconstruction from the data set. More
precisely, Zhao et al. (2000, 2001) construct a local minimizer of the follow-
ing energy:

E(Γ) =

(
∫

Γ
dp

S(x) ds

)1/p

,
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using gradient descent with an initial guess constructed from {dS = ǫ0}
by a fast tagging algorithm (Zhao et al. 2001). The positive constant ǫ0
is determined from the sampling density of S. No a priori knowledge is
assumed about the topology of the shape to be reconstructed. See Zhao
and Osher (2003) for a recent review article.

5. Segmentation algorithms

The task of image segmentation is to find a collection of non-overlapping
subregions of a given image. In medical imaging, for example, one might
want to segment the tumour or the white matter of a brain from a given
MRI image. In airport screening, one might wish to segment certain ‘sens-
itive’ shapes, such as weapons. There are many other obvious applications.
Mathematically, given an image u : Ω ⊂ R

2(or R
3)�→ R

+, we want to find
closed sets Ωi satisfying

Ω =
N
⋃

i=1

Ωi, and
N
⋂

i=1

Ω
(0)
i = ∅,

such that F(u, Ωi) = 0, where F is some functional that defines the seg-

mentation goals and Ω
(0)
i denotes the interior of Ωi. As in the example of

finding tumours, typically, N is taken to be 2 (sometimes N = 3 when
volumetric data is given), and Ω1 is taken to be the region corresponding to
the tumour, while Ω2 contains everything else. It is then natural to devise
a level set method to perform this task, by representing, for example, Ω1

as the region in which φ is nonnegative. A slightly more general statement
would be to perform segmentation from a given set of images uj that come
from different sources. For example, one might be interested in segmenting
stealth fighter jets from both conventional radar signals and also infrared
images.

Very often, the definition of what belongs to the ‘desired’ regions depends
on the grey-scale intensity of the given image, and the problem of finding
such regions is formulated as a variational problem; i.e., the solution minim-
izes some ‘energy’. In a standard level set method, φ is used to represent Ωi

and ∂Ωi. This is the setting of our discussion. In this section, we describe
some level set segmentation methods based on this type of definition.

5.1. The Chan–Vese algorithm

This is closely related to the classical Mumford–Shah algorithm (Mumford
and Shah 1989), but uses a simple level set framework for its implement-
ation. We present the original Chan–Vese segmentation algorithm (Chan
and Vese 2001a), and discuss various aspects of this algorithm.
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Basic formulation

The minimization problem is

min
φ∈BV (Ω),c1,c2∈R+

E(φ, c1, c2; u0),

where the energy is defined as

E(φ, c1, c2; f) = µ

∫

Ω
δ(φ)|∇φ|dx (5.1)

+ λ1

∫

Ω
|f − c1|2H(φ) dx + λ2

∫

Ω
|f − c2|2(1 − H(φ)) dx.

Intuitively, one can interpret from this energy that each segment is defined
as the subregions of the images over which the average of the given image is
‘closest’ to the image value itself in the L2-norm. The first term in the en-
ergy measures the arc length of the segment boundaries. Thus, minimizing
this quantity provides some stability to the algorithm as well as preventing
fractal-like boundaries from appearing.

If one regularizes the δ function and the Heaviside function by two suitable
smooth functions δǫ and Hǫ, then formally the Euler–Lagrange equations
can be written as

∂φE = −δǫ(φ)

[

µ∇ · ∇φ

|∇φ| − λ1(f − c1)
2 + λ2(f − c2)

2

]

= 0, (5.2)

with natural boundary condition

δǫ(φ)

|∇φ|
∂φ

∂�n
= 0 on ∂Ω.

c1(φ) =

∫

Ω f(x)Hǫ(φ(x)) dx
∫

Ω Hǫ(φ(x)) dx
, (5.3)

and

c2(φ) =

∫

Ω f(x)(1 − Hǫ(φ(x))) dx
∫

Ω(1 − Hǫ(φ(x))) dx
. (5.4)

Discretization

A common approach to solving the minimization problem is to perform
gradient descent on the regularized Euler–Lagrange equation (5.2); that is,
solving the following time-dependent equation to steady state:

∂φ

∂t
= −∂φE

= δǫ(φ)

[

µ∇ · ∇φ

|∇φ| − λ1(f − c1)
2 + λ2(f − c2)

2

]

. (5.5)
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Figure 5.1. Brain segmentation in 2D.

Here, we remind the readers that c1(φ) and c2(φ) are defined in (5.3)
and (5.4).

In the Chan–Vese algorithm, the authors regularized the Heaviside func-
tion used in (5.3) and (5.4),

H2,ǫ(z) =
1

2

(

1 +
2

π
arctan

(

z

ǫ

))

,

and defined the delta function as its derivative:

δ2,ǫ(z) = H ′
2,ǫ(z).

Equation (5.5) is then discretized by a semi-implicit scheme; i.e., to advance
from φn

i,j to φn+1
i,j , the curvature term right-hand side of (5.5) is discretized

as described in the previous section using the value of φn
i±1,j±1

, except for

the diagonal term φi,j , which uses the implicitly defined φn+1
i,j . The integrals

defining c1(φ) and c2(φ) are approximated by a simple Riemann sum with
the regularized Heaviside function defined above. φt is discretized by the
forward Euler method, (φn+1

i,j −φn
i,j)/∆t. Therefore, the final update formula

can be written as

φn+1
i,j =

1

1 + ακ

(

φn
i,j + G(φn

i−1,j , φ
n
i+1,j , φ

n
i,j−1, φ

n
i,j+1)

)

,

where ακ ≥ 0 comes from the discretization of the curvature term. If the
scheme were fully explicit, ακ = 0 and G would depend on φn

i,j . In the
original paper, the authors used ∆x = ∆y = 1, ǫ = 1, and ∆t = 0.1. This
implies that the delta function is really a regular bump function that puts
more weight on the evolution of the zero level set of φ. See Figures 5.1 and
5.2 for some results of this algorithm applied to brain segmentation.

Finally, it is also possible but usually not advisable in this (unusual)
case because new zero level sets are likely to develop spontaneously, to
replace the δ function in front of the curvature term by |∇φ| (Marquina and
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Figure 5.2. Brain segmentation in 3D.

Osher 2000). The equation then becomes independent of the choice of the
level set function used, i.e., the problem becomes morphological (Alvarez
et al. 1993).

5.2. Fast segmentation algorithms

Recently, Gibou and Fedkiw (2005), and later Song and Chan (2002), pro-
posed some fast methods that are based on the Chan–Vese level set segment-
ation formulation. These algorithms are built upon flipping the values of φ
at each grid point/pixel from positive to negative or vice versa according to
a rule R, and contain 4 main steps.

(1) Initialize φ0 : Ω �→ {−1, 1}.
(2) Advance: for each node, set φn+1(x) = −φn(x) if R(φn+1, φn, x) = 1.

(3) (Perform regularization if needed.)

(4) Repeat until φn+1 ≡ φn.

For example, in Gibou and Fedkiw’s algorithm, R(φn+1, φn) = 1 if

V (φn) · sign(φn) < 0;

here V corresponds to the fitting term in the Euler–Lagrange equation

V (φn, x) := −λ1(f − c1(φ
n))2 + λ2(f − c2(φ

n))2.
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(Note that the case V = 0 is implicitly defined.) In this algorithm, step (3)
is essential for regularizing the segment boundaries. Without it, fractal-like
boundaries may develop.

In Song and Chan’s algorithm, the key observation is that only the signs
of the level set function matter in the energy functional. This can easily
be seen from the model defined in equation (4.1), in which the energy is a
function of H(−φ). In this algorithm, R(φn+1, φn) can be interpreted as
the logical evaluation of the following inequality:

E(φn+1, c1, c2; f) ≤ E(φn, c1, c2; f).

Hence, the sign of φn(x) is flipped only if the energy (5.1) is non-increasing.
This provides stability of the algorithm at the cost of some speed of imple-
mentation.

We remark that there is a close connection between these two ‘level set’
methods to the ‘Γ-convergence’ methods of Ambrosio and Tortorelli (1990).
The Chan–Vese segmentation method can be approximated by the following
variational problem:

Eǫ(u, c1, c2; f) := µ

∫

ǫ|∇u|2 +
1

ǫ
W (u) dx (5.6)

+ λ1

∫

u2(f − c1)
2 + λ2

∫

(1 − u)2(f − c2)
2 dx,

where w(u) = u2(1 − u)2, and ǫ is a small positive number. Due to the
strong potential ǫ−1W (u), u will quickly be attracted to either 1 or 0, and
consequently, the term u2 and (1 − u)2 correspond respectively to H(φ)
and 1 − H(φ) in (5.1), and ǫ|∇u|2 corresponds to the regularization of of
the length of ∂Ωi. Intuitively, one can interpret the Gibou–Fedkiw or Song–
Chan algorithm as performing a one-step projection to the steady state that
results from the stiff potential W .

5.3. Segmentation of multiple ‘phases’

There are successful efforts to generalize the level set methods for multiphase
computation. For example, in Zhao et al. (1996), each partition Ωi is rep-
resented by a level set function φi. It is then important to enforce the con-
straints that (1) the regions represented do not overlap (

⋂N
i=1{φi < 0} = ∅),

and (2) there are no unclaimed regions; i.e., every point in Ω belongs to

certain Ωi (Ω =
⋃N

i=1{φi ≤ 0}). Interesting formulae are derived in the
variational setting to enforce these two conditions. However, this approach
is expensive when the number of phases is large.

Vese and Chan (2002) use the sign of the level set functions φj as a binary
coding for the phases, each assigned a nonnegative integer value. Suppose
there are four phases, Ωi, i =, · · · , 3, and two level set functions φ0 and φ1
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are used for their representation. One can then write, for instance,

Ω0 = {φ0 ≥ 0}
⋂

{φ1 ≥ 0}, Ω1 = {φ0 ≤ 0}
⋂

{φ1 ≥ 0},

Ω2 = {φ0 ≥ 0}
⋂

{φ1 ≤ 0}, Ω3 = {φ0 ≤ 0}
⋂

{φ1 ≤ 0}.

In full generality, write the phase number i in binary format i =
∑n−1

k=0 ck ·2k,
where ck takes on either 0 or 1. Then one way of using {φk}n−1

k=0 level set
functions to represent Ωi is to identify

Ωi =
n−1
⋂

k=0

{x ∈ Ω : (1 − ck) · φk(x) ≥ 0}.

It appears that the gradient descent algorithm using this formulation is
quite sensitive to the initial configurations and tends to get stuck in some
undesirable local minima. There is also the potential misidentification of
what is supposed to be categorized as one single phase to two or more
‘different’ phases, since the formulation really comes with 2n phases with n
level set functions. In the Chan–Vese algorithm, for example, it is possible
that the image u has the same average in two different segments. Another
drawback is the possible miscalculation of the arc length/surface area of
each phase, when two phase boundaries are forced to collapse into one and
may be given more weight than others. An important but so far untouched
(to the best of our knowledge) problem in the level set world is to determine
the optimal number of phases in certain segmentation problems.

5.4. Discussion

One of the successful features reported in Chan and Vese (2001a) is the
emergence of new interior contours. As we mentioned earlier, if one enforces
the level set function to be the distance function to the existing interfaces or
replace the delta function by |∇φ| and computes locally, then the existing
interfaces are only allowed to merge or disappear. The authors attributed
the possibility of new interior contour emergence to their particular choice
of delta function that has non-compact support. One common approach
in getting around this problem is to initially seed many small circles that
are densely distributed throughout the given image and let them gradually
merge and evolve to a number of larger contours. See Figure 5.3.

This approach seems to capture the interior contour pretty well. While
the statements about the nonlocal effect of the particular delta function
used in Chan–Vese are valid, more careful study is called for to compare the
degree of regularization, and diameter of the interior of any segmentation,
with the possibility of the emergence of a new interior contour. We would
also like to comment that the iterative approach adopted by Chan and Vese
can be regarded as a version of Gauss–Jacobi iterations for the nonlinear
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Figure 5.3. Initialization.

Euler–Lagrange equation (5.2). This statement can be supplemented by
looking at the same approach applied to the linear equation:

ut = ∆u.

The complexity of both approaches is proportional to N2, the total number
of pixels. We remark that it is possible to speed up the gradient flow in the
Chan–Vese algorithm by a splitting method described in Eyre (1998).

There are many new (and old) ‘level set’ segmentation algorithms that
discard the continuity of the level set function and propose, instead, to
model the segmentation problem as a completely discrete, pixel-by-pixel,
algorithm. As in Gibou and Fedkiw (2005) and Song and Chan (2002),
these types of methods typically appear to be faster, and in some cases
more flexible in handling multiple phases. These trends seem to be going
against the original spirit and raison d’être of PDE-based level set meth-
ods for image processing – the geometry of the interface is approximated
at higher-order accuracy through the assumed continuity of the level set
function over the grid. This fact resonates with the criticism of phase field
models for segmentation, that there is no accurate representation of the
interface, unless one refines the grid and resolves the stiff parameter ǫ−1

(something that is typically impossible to do for many image applications).
See Merriman, Bence and Osher (1994) for a precise analysis of this.

One should ask whether accurate representation of the phase boundaries
is really needed for the problem at hand. Of course, there are applications in
which geometrical quantities of the phase boundaries play important roles
in the model; e.g., in the disocclusion application of Nitzberg, Mumford
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and Shiota (1993) and also in the applications related to Euler’s elastica. In
these types of applications, the ‘conventional’ level set approach certainly
has an advantage. In the cases where the geometrical quantities are not of
importance, the piecewise constant model may be quite useful.

Our last comment is on the regularization term of the level set segmenta-
tion methods. So far, popular choices have been those variants arising from
minimizing the length of the interface. In denoising, as we have seen, this
corresponds to L1 regularization of the image gradient. It is possible that
the features to be segmented, owing to their origin, retain special orienta-
tions and are anisotropic. This application appears, for example, in material
sciences. In this case, one should look into the possible alternatives. We
point out that Wulff energy is one such possible candidate. There, the
regularization operator R is a function of the normal of the interface, i.e.,
R(n) = div(γ(n)). (In the common TV regularization, γ(n) = n.) We refer
to Soravia (1994), Osher and Merriman (1997), Peng, Osher, Merriman and
Zhao (1999b) and Esedoglu and Osher (2005) for more details.

6. Pushing the limit

In this section, we describe recent work corresponding to the classical ap-
plications we listed above.

6.1. Image decomposition

Many important tasks in image science involve the decomposition of given
images into different components. Again, we start with total variation de-
noising model (1.4)

min
u

E(u) = λ

∫

(u − f)2 dx +

∫

|∇u|dx.

One can re-interpret this model as finding a decomposition of the given
image f into a sum of two functions: f = u + v, with u corresponding to
the ‘clean’ image that one wishes to reconstruct from f , and v contains
the unwanted noise that is separated from f. The segmentation model of
Mumford and Shah essentially proposes a similar decomposition, with the
additional constraint on a lower-dimensional set that is interpreted as the
edge of the resulting segmentation. If one considers the special setting
in which images take on only two values c1 and c2, and the boundaries
between the two constant regions are rectifiable, then the total variation of
u corresponds to the length of the boundaries weighted by the jump |c1−c2|.
In this context, the link between the two models is especially clear. This
connection was pointed out by Vese and Osher (2002) and was described in
Osher (2003).
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In his inspiring book of 2001, Meyer examined the total variation model
of Rudin et al. (1992) more closely and proposed a decomposition in which
the noise and texture part, v, is written as the divergence of a vector field;
i.e., v = divg with the norm ‖v‖∗ defined as the infimum of L∞ norms of
such vectors g. The proposed decomposition finds u as the solution to the
following minimization problem:

min
u

λ‖f − u‖∗ +

∫

|∇u|dx.

The motivation of Meyer is that the L2 norm used in the first integral in
(1.4) to measure the noise and texture part of f can be improved by using
the dual norm of ‖ · ‖BV (with proper completion of the space BV). This
book triggered a sequence of interesting studies and useful algorithms.

Vese and Osher (2003) approximated Meyer’s ‖ · ‖∗ norm by an Lp norm,
and proposed a modified variational model:

min
u,g1,g2

E(u, g1, g2) = λ

∫
(

f −
(

u +
∂g1

∂x
+

∂g2

∂y

))2

dx + µ

(
∫

(g2
1 + g2

2)
p

2

)
1
p

+

∫

|∇u|dx.

Osher, Sole and Vese (2003) assumed the Hodge decomposition of the vector
field g: g = ∇P + Q, where Q is divergence-free. With this assumption,
and the H−1 norm square in place of ‖ · ‖∗, they proposed the model

min
u,g1,g2

E(u, g1, g2) = λ

∫

|∇∆−1(u0 − u)|2 dx +

∫

|∇u|dx.

Later, the first decomposition was combined with other texture synthesis
technique to inpaint textured images (Bertalmio et al. 2003).

See Haddad and Meyer (2004) for a recent review of the related variational
models.

6.2. Inverse scale space and PDE-based multi-resolution image analysis

It is possible to construct a hierarchical decomposition of a given image
using the ‘length scale’ parameter λ in the TV denoising model. Tadmor,
Nezzar and Vese (2004) study the convergence properties of this type of
decomposition using λ = λ02

j . More precisely, the decomposition starts
with f = u0 + v0, where u0 is the minimizer of the standard TV denoising
model

min
u∈L2(Ω)

ETV (f, u, λ0) =

∫

Ω
|∇u|dx + λ0

∫

Ω
|f − u|2 dx

and then iteratively performs the same decomposition for the residual vj :

uj+1 = arginfu∈L2(Ω)ETV (vj , u, λ02
j), and vj+1 = vj − uj+1.
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This procedure thus leads to a nonlinear hierarchical decomposition

f =
k

∑

j=0

uj + vk.

The same strategy was first proposed in Scherzer and Groetsch (2001).
Instead of using the L2 norm in the fitting term, Esedoglu and Chan

(Esedoglu and Chan 2004) reported interesting results for the model

EEC = min
u∈L1(Ω)

∫

Ω
|∇u|dx + λ‖f − u‖L1 ,

which was studied in Alliney (1996) and Nikolova (2002).
Figure 6.1 shows the graph of the fidelity term in EEC and ETV as func-

tions of λ, computed from a given image containing features of different sizes
(length scales). The fidelity term in EEC appears to be a piecewise smooth
function of λ, and, strikingly, the discontinuities seem to correspond to some
visually drastic change in scale space, e.g., to the disappearances of objects
of certain fixed length scales. The intensity of the remaining parts seems to
remain constant within each connected smooth part of the graph of EEC .
Figure 6.1 shows an example of such decomposition. It is worth noting that
in the case of the L2 decomposition, the intensity of every part of u fades
gradually with the increment in λ. See Figure 6.2. It is especially intriguing
to realize the inferred connection of this decomposition with human percep-
tion of the size of objects in images. As it is pointed out by Esedoglu and
Chan (2004), the L1 scale space suggests a way to select the scale parameter
λj using the discontinuities in the fidelity term.

Bregman distance and inverse scale space
Recently, Osher, Burger, Goldfarb, Xu and Yin (2005) proposed a different
approach to multi-resolution image analysis in scale space. Their proposed
method, surprisingly, can be interpreted as a rather unique application of
a powerful method, known as Bregman iteration, for constructing the min-
imizer of convex problems.

Rather than varying λ in the total variation denoising model (1.4), the
authors proposed to iteratively ‘fortify’ selected parts of a given image and
subsequently perform the standard TV decomposition using the modified
image. Their algorithm can be described as follows.

• Let u1 = arg min E(u) + λ
2‖f − u‖2

L2 .

• Define f = u1 + v1.

• Then inductively, let

uk = arg min E(u) +
λ

2
‖f + vk−1 − u‖2

L2

and f + vk−1 = uk + vk.
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Figure 6.1. Inverse scale space using L1-BV decomposition.

In other words, the ‘noise’ vk−1 is added back to f and ROF minimization
is performed with f replaced by f + vk−1 to decompose this function into
‘signal’ (uk)+ ‘noise’ (vk). Intuitively, if vk contains both some structural
information (e.g., edges) of the optimized cleaned image u as well as the
noise, then in the subsequent ROF decomposition, the fitting term will
effectively have an inhomogeneous weighting on the locations of the support
of vk−1. Noise should be cleaned out from u more rapidly than the structural
parts. The authors proved that as k → ∞, uk → f monotonically in L2. In
other words, k can be regarded as a parameter for scale; the larger k, the
finer the scale information incorporated in uk. For denoising purpose, the
authors observed that one can find a k0 such that uk0 resembles the ideal
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Figure 6.2. Inverse scale space using L2-BV decomposition.

cleaned image much better than the standard ROF solution. Figure 6.3
shows a decomposition of this sort.

As mentioned above, the procedure outlined above is identical to an it-
erative procedure using the so-called Bregman distance. Briefly, define a
sequence {uk} defined by: Let u0 = 0, p0 = 0, for k = 1, 2, . . .

Compute uk = arg minQk(u)

Qk : u → E(u) − E(uk−1) − 〈pk−1, u − uk−1〉

+
λ

2
‖f − u‖2

L2

where 〈·, ·〉 denotes the usual duality product and pk is the subgradient of
E(uk). Then compute using the update equation

pk = pk−1 + λ(f − uk). (6.1)
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Figure 6.3. Bregman iterative refinement on ROF denoising, 2D finger
example. Multi-step. The first k for ‖f −uk‖L2 < δ is the optimal result.

Actually this procedure works effectively in great generality, for example,
deblurring/denoising of images, recovering unknown coefficients for elliptic
equations. Of course ‖f − u‖2

L2 is replaced by another appropriate fitting
term in those examples.

Here we recognize that we are using the Bregman distance between u, uk−1,
defined as follows,

D(u, v) = E(u) − E(v) − 〈u − v, p〉, p ∈ ∂E(v),

where ∂J(v) is the subgradient of the (perhaps) nonstrictly convex function
J(u). We have

Qk(u) = D(u, uk−1) +
λ

2
‖f − u‖2

L2 .

It was shown in Osher et al. (2005) that we obtain a unique sequence
of minimizers uk and subgradients pk satisfying (6.1) above. The Bregman
distance and the associated iteration was not typically used in this fashion
in the past. Rather it was used to minimize functions H(u, f) where H is a
(usually complicated) convex function of u having a unique minimum: see,
e.g., Cetin (1989).
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Osher et al. (2005) showed that {uk} defined in the sequence satisfies

‖uk − f‖2
L2 ≤ ‖uk−1 − f‖2

L2

and if f ∈ BV (Ω), then

‖uk − f‖2
L2 ≤ E(f)

k
,

i.e., uk converges monotonically to f in L2 with L2 rate O
(

1√
k

)

.

Of course this convergence is not particularly useful to us as a denoising
algorithm. The function f is typically noisy. The key denoising result
obtained in Osher et al. (2005) is as follows.

Let g ∈ BV (Ω). Then

D(g, uk) < D(g, uk−1)

as long as

‖f − uk‖2
L2 ≥ τ‖g − f‖2

L2

for any τ > 1.
This gives a stopping rule for our iterative procedure. If we have an

estimate of the variance of the noise, i.e.,

f = g + n,

where g ∈ BV (Ω) is the denoised image and n is the noise, with

‖n‖L2 = σ,

then we stop at the first k for which

‖f − uk+1‖L2 ≤ σ.

Burger, Osher and Xu (2005) elegantly reformulated their new algorithm
into a continuous flow in scale space, involving the solution of an integro-
differential equation. For λ = ∆t, k∆t = t, consider the Bregman iterations
written in the form

p(t) − p(t − ∆t)

∆t
= f − u(t),

where

p = −∇ · ∇u

|∇u| = ∂E ,

and E(u) =
∫

|∇u|dx; i.e., p is the subgradient of E . Letting ∆t ↓ 0, we
arrive at the differential equation

dp

dt
= f − u(t)

u(t) = u(p(t)), u(0) = p(0) = 0.
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So if the flow exists and is well behaved, we have an inverse scale space. This
means that we start at u(0) = 0 and converge as t → ∞, i.e., limt→∞ u(t) =
f . We go from the smoothest possible image to the noisy image f . The
goal is to use the flow to denoise the image, i.e., to get closer initially to
the denoised image g, until t crosses a threshold.

As an example, consider the analytically easier case E(u) = 1
2

∫

|∇u|2that

is detailed in Scherzer and Groetsch (2001). Then p = −∆u with ∂u
∂n = 0

on ∂Ω. There is a unique solution for u, given
∫

Ω p = 0, u = −∆−1p. (We
also normalize so

∫

Ω u =
∫

Ω f = 0.) Simple manipulation leads us to the
equation

d

dt
(u − f) = ∆−1(u − f)

or

u = f − e∆−1tf → f.

For example, if Ω is the unit square, then we may expand

f =
∞

∑

i,j=1

f̃ij cos(πix) cos(πjy),

u =
∞

∑

i,j=1

ũij cos(πix) cos(πjy),

where ũij = f̃ij

(

1 − e
− t

(i2+j2)π
)

.
We refer the reader to Burger et al. (2005) for an extension to the im-

portant case E(u) =
√

|∇u|2 + ǫ2.

6.3. Diffusion-generated motion and the Esedoglu–Tsai algorithm

Recently, Esedoglu and Tsai, partially motivated by the algorithms presen-
ted above, proposed a type of fast segmentation algorithm (Esedoglu and
Tsai 2004). Their main algorithm can be regarded as a splitting scheme
for the Modica–Mortola functional (5.6) using a thresholding approach sim-
ilar to the MBO scheme (Merriman et al. 1994). The segmentation will be
represented by a function v such that {v = 0} and {v = 1} represent the dis-
joint partitions in the segmentation. Their algorithm consists of three steps.

(1) Evolve

wt = ∆w − λ√
πδt

(

w(c1 − f)2 + (w − 1)(c2 − f)2
)

for t ∈ (tn, tn + δt] using w(tn) = vn and the periodic boundary condi-
tion.
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(2) Set

vn+1 =

{

0 if w(x, tn + δt) ∈ (−∞, 1
2 ],

1 if w(x, tn + δt) ∈ (1
2 ,∞).

(3) Update c1 and c2 by

c1 =

∫

D vf dx
∫

D v dx
, and c2 =

∫

D(1 − v)f dx
∫

D(1 − v) dx
.

The stiffness of the phase field model (5.6) is resolved by the splitting and the
projection to equilibrium (step (2)). Step (1) involves solving linear PDEs
with standard Laplacian and can be solved using any mature numerical
scheme such as a Fourier method or a multigrid method. The authors
studied the consistency of this algorithm by using an asymptotic expansion
near the boundary ({v = 1/2}) and proposed a modified scaling λ̃ = λ/

√
πδt

so that the length parameter in the final algorithm scales independently of
any other parameters. See Figure 6.4.
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Figure 6.4. Segmentation results in a succession of grid
refinements. With the same parameters δt and λ, the
algorithms converge in three iterations and produce
virtually identical segmentations.
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6.4. Computer graphics and beyond

We will see that these efforts combine many different ideas to manipulate
more complicated geometrical objects. However, the basic principle and
spirit remains unchanged. Burchard et al. (2001) and Cheng, Burchard,
Merriman and Osher (2002) provided a level set framework to represent and
move curves on implicit surfaces or in three-dimensional space. This frame-
work was then generalized to process images and even more general quant-
ities such as vector fields that are defined on nonflat surfaces (Bertalmio
et al. 2001b). Figure 6.5 shows inpainting over a sphere. This is one of
the pioneering works on more complicated geometries in the level set frame-
work. Generally speaking, the key is to raise the space dimension and/or the
number of level set functions. For example, Zhao et al. (1996) used multiple
level sets to solve a multiphase minimal surface problem. Vese and Chan
(2002) further generalized the idea and applied it to image segmentations.
This was discussed in the previous section. Smereka (2000) used multiple
level sets to define spirals and study the formation of screw dislocations
in crystal growth. Liao, Bergsneider, Vese, Huang and Osher (2002) used
this approach in brain morphing. Additionally, Smith et al. (2002) also
had an interesting level set approach to the multiphase computation that
could be used in image segmentation. As a last example, in the framework
of Burchard et al. (2001) and Cheng et al. (2002), a curve is represented
as the intersection of two implicit surfaces, and the differential operators
on surfaces are approximated by the projections of the related operators in
the ambient space. This was then generalized to work on even more com-
plicated geometrical objects commonly seen in dynamic geometrical optics
(Osher et al. 2002a). This approach makes the manipulation of even more
complicated curves and surfaces possible: see Figure 6.6.

Figure 6.5. The image on the right is the denoised
and inpainted result from the left.
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Figure 6.6. These figures shows some complicated
curves with self-intersections using the approach in
Osher et al. (2002a).

Visibility

The problem of visibility involves the determination of regions in space
visible to a given observer when obstacles to that sight are present. When
the observer is replaced by a light source in the simplified geometrical optics
setting with perfectly absorbing boundary condition at the obstacles, the
problem translates to that of finding illuminated regions.

One of the most straightforward applications is in surface rendering. Typ-
ically, explicit ray tracing techniques have been used to render a ‘realistic’
projection of the visible part of the given surfaces on the image plane. Not
surprisingly, some areas related to the accumulation on surfaces of quant-
ities that propagate like light also need visibility information. Examples
include etching (Adalsteinsson and Sethian 1997), the formation of huge ice
spikes on the Peruvian Andes mountains (Betterton 2001), and shape from
shading models (Jin, Yezzi, Tsai, Cheng and Soatto 2005a): see Figure 6.7.

We point out here that in many of the applications listed above, the
data (i.e., surfaces) are given implicitly. It is therefore natural to work
directly with the implicit data without converting to a different explicit
representation. A very versatile level set method for the visibility problem
has recently been developed by the authors and collaborators (Tsai, Cheng,
Burchard, Osher and Sapiro 2004). The underlying basic algorithm can be
regarded as a multi-level implicit ray tracer that works with volumetric data.
Given a level set function ψ describing the obstacles D that obstruct the
lines-of-sight, the visibility function φ(y; x0) constructed by the algorithm
in Tsai et al. (2004) takes the form

φ(y; x0) = min
z∈L(y,x0)

ψ(z), (6.2)

where L(y, x0) is the integral curve of the vector field r, connecting y and x0.
The simplicity of this formulation and the associated algorithm facilitates
many further extensions and applications.
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Figure 6.7. The picture on the right shows the reconstructed
surface from multiple images on the right (Jin et al. 2005a).

These algorithms have been applied successfully in reconstructing surfaces
from multiple images of different views (Jin et al. 2005a). They can also
be applied directly to some surface renderers, e.g., the ‘non-photo-realistic’
renderer of Hertzmann and Zorin (2000). In the algorithm defined in Tsai
et al. (2004), the boundaries of visible and invisible regions, both silhouette
and swath2 (Duguet and Drettakis 2002), are implicitly represented in the
framework of Burchard et al. (2001) and Cheng et al. (2002), mentioned
above. Figure 6.8 shows an accumulated visibility result of a path above
the Grand Canyon. Figure 6.9 shows a result and the silhouette.

This implicit framework for visibility offers many other advantages. For
example, the visibility information can be interpreted as the solution of
a simple Hamilton–Jacobi equation and Tsai et al. (2004) offers a near-
optimal solution method on the grid. The dynamics of the visibility with
respect to moving vantage points or dynamic surfaces can be derived and
tracked implicitly within the same framework. Furthermore, using the same
framework and the well-developed level set calculus and numerics, one can
start solving variational problems involving the visibility numerically and
efficiently (Cheng and Tsai 2004).

Let D be the non-reflecting occluders in a domain Ω. Cheng and Tsai
(2004) considered the following three central questions that are important
in a variety of applications.

• What is the optimal location x0 for an observer such that a maximum
volume of Ω is visible?

2 A swath is a set consisting of the points of intersection of rays which are tangent to an
occluder with yet another occluder.
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Figure 6.8. The black regions are invisible to the path
indicated by the diamonds.
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Figure 6.9. The surface borders the visible and invisible
regions. The curves indicate the silhouettes and swaths.
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A larger class of problems emerges when variations and extensions involving
the observer and the space – multiple observers, moving observers, optim-
ality under different measures – are taken into account. For example:

• What are the optimal locations {xi} for a collection of observers, so
that jointly a maximum volume of Ω is visible?

• What is the optimal path γ(t) of an observer, travelling from A to B,
so that a maximum volume of Ω is visible?

In most situations, it is useful to think of an observer as a light source.
Consequently, Cheng and Tsai (2004) approach solving the three central
questions by maximizing the volume of illuminated regions in Ω, or maxim-
izing the averaged illumination (exposure) in Ω. Two ideas are formulated
as the two main variational problems below.

Problem 6.1. (Volume-based visibility optimization) Define V (xo)
as the volume of Ω visible from xo. Find xo ∈ A ⊆ Ω such that V (xo) is
maximized. Mathematically,

max
xo∈A⊆Ω

V (x0) =

∫

Ω\D
H(φ(y; x0)) dy.

The approach is to introduce an artificial time variable τ and flow xo from
a given initial location to a local maximum. The computation of the gradient
of V (xo) replies heavily on the Lipschitz-continuity of φ for accuracy. This,
of course, can be generalized to multiple observers and different weighting
in space:

max
xJ∈A⊆Ω

V ({xj}) =

∫

Ω\D
w(y, x1, · · ·xj)H(φ(y; {xj}) dy.

Here φ(y; {xj}) represents the joint visibility of {xj}; i.e., φ(y; {xj}) ≥ 0 is
y is visible to any of xj .

Define a function X that counts how many times a given point y can
be seen from a collection of observers. This concept can be extended to
construct an optimal path for surveillance. Consider the amount of time
a point y is exposed to an observer travelling at unit speed along a path
γ : [0, 1] → R

d, parametrized by τ ,

X (y; γ) =

∫ 1

0
H ◦ φ(y; γ(τ))|γ′(τ)|dτ,

which we will refer to as the exposure due to γ on x. Points outside obstacles
can be said to be viewed in a more uniform manner by an observer moving
along γ if the deviation of the exposure from being constant is small for
some constant C, as we see in the following problem.
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Figure 6.10. The upper left figure shows the occluders
(three disjoint circles), the initial curve (the curve
intersecting the three occluders), and the optimized curve
(dotted curve). The constant C is chosen to be 4.2, the
curvature regularization term is 0.05. The images in the
second row show the exposure of the initial and the
optimized paths.

Problem 6.2. (Exposure-based visibility optimization) Given p0, p1

∈ R
d, and a constant C, find γ : [0, 1] �→ R

d with γ(0) = p0 and γ(1) = p1

minimizing the energy

E(γ, C) =
1

2
‖X (·; γ) − C‖2

L2 + λ

∫ 1

0
|γ′(τ)|dτ. (6.3)

Finally, Cheng and Tsai (2004) considered a time-dependent problem
driven by the presence of an evader y(t). The objective is to keep the evader
from vanishing into the occlusion. The ‘inescapability’ of the evader from
the pursuer is quantified as the distance between the evader and the ob-
server, and the distance the evader is from the occlusion. Again, taking
the advantage of the continuity of the visibility representation, Cheng and
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Figure 6.11. Past trajectories due to the absence and
presence of the visibility gradient term. The diamonds
and crosses indicate the current locations of the observer
and the evader, respectively. The lower left plot is with
the absence of the gradient term and should be compared
to the lower right plot. The upper right plot is a longer
time simulation when the gradient term is present.

Tsai defined

I(xo, y) =
1

2
|x0 − y|2 − λφ(y; x0),

and formulated the corresponding problem.

Problem 6.3. (Inescapability) Find x(t) so that I(xo(t), y(t)) is strictly
decreasing with a prescribed rate.

Various aspects of Problems 6.1 and 6.2 are studied in Cheng and Tsai
(2004). Figure 6.10 shows a circular initial path being deformed to a locally
optimized path for uniform visibility. Figure 6.11 shows a comparison of the
past trajectories of xo with and without the consideration of maximizing
inescapability.
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7. Current trends

Currently, higher-order nonlinear PDEs are increasingly appearing in image
science. For example, in image inpainting of Chan et al. (2002), Esedoglu
and Shen (2002) and Lysaker, Osher and Tai (2004), a fourth-order PDE
is derived by regularizing the level set curvature a given image. In com-
puter graphics, Tasdizen, Whitaker, Burchard and Osher (2003) proposed
performing anisotropic diffusion on the normals of a given level set surface
model. In general, fourth-order equations are much harder to analyse, since
they rarely have a maximum principle.

An interesting paper of Burchard (2002) discusses the diffusion operators
constrained in colour space, which involves a new vector-valued extension
of TV minimization.

There are many imaging applications formulated as inverse obstacle prob-
lems using level set formulations. Medical imaging contains many such
applications. Recently, level set optimization methods have been used for
the morphological registration of medical images by Droske and Rumpf
(2003/04) and by Vemuri, Ye, Chen and Leonard (2003), where objective
functionals similar to elastic energies have been minimized using level set
gradient methods. We expect to see more advances in this area.

In many computer graphics simulations using level set formulations, we
see an emergence of semi-Lagrangian methods owing to the ease of incorpor-
ating them into some adaptive gridding (see Enright, Losasso and Fedkiw
(2005), Falcone and Ferretti (2002) and also Losasso, Fedkiw and Osher
(2004)). There are efforts to develop Newton method optimization tech-
niques for finding the minima of variational image models. We refer the
interested readers to the recent review paper of Burger and Osher (2005)
for these problems and applications involving optimal design.

We anticipate increasing efforts in the analysis of the mathematical image
models as well as numerical analysis of various aspects of the corresponding
algorithms.

Acknowledgements

The authors thank Li-Tien Cheng, Selim Esedoglu, Frédéric Gibou, Jackie
Shen, and Luminita Vese for providing their results for this paper.

The first author would like to thank the National Center for Theoretic
Study, Taiwan for hosting his stay while parts of this research was being
performed.



566 Y.-H. R. Tsai and S. Osher

REFERENCES

D. Adalsteinsson and J. Sethian (1997), ‘An overview of level set methods for etch-
ing, deposition, and lithography development’, IEEE Trans. Semiconductor
Manufacturing 10(1), 167–184.

O. Alexandrov and F. Santosa (2005), ‘A topological preserving level set method’,
J. Comput. Phys., to appear.

S. Alliney (1996), ‘Recursive median filters of increasing order: A variational ap-
proach’, IEEE Trans. Signal Process. 44(6), 1346–1354.

F. Alvarez, F. Guichard, J.-M. Morel and P.-L. Lions (1993), ‘Axioms and funda-
mental equations of image processing’, Arch. Rat. Mech. Anal. 123, 199–257.

L. Ambrosio and V. M. Tortorelli (1990), ‘Approximation of functionals depending
on jumps by elliptic functionals via Γ-convergence’, Comm. Pure Appl. Math.
43(8), 999–1036.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro and J. Verdera (2001), ‘Filling-
in by joint interpolation of vector fields and gray levels’, IEEE Trans. Image
Process. 10(8), 1200–1211.

C. Ballester, V. Caselles and J. Verdera (2003), ‘Disocclusion by joint interpola-
tion of vector fields and gray levels’, Multiscale Model. Simul. 2(1), 80–123
(electronic).

D. Balsara and C.-W. Shu (2000), ‘Monotonicity preserving weighted essentially
non-oscillatory schemes with increasingly high order of accuracy’, J. Comput.
Phys. 160(2), 405–452.

M. Bardi and S. Osher (1991), ‘The nonconvex multi-dimensional Riemann problem
for Hamilton–Jacobi equations’, SIAM J. Math. Anal. 22(2), 344–351.

G. Barles and P. E. Souganidis (1991), ‘Convergence of approximation schemes for
fully nonlinear second order equations’, Asymptotic Anal. 4(3), 271–283.

M. Bertalmio, A. L. Bertozzi and G. Sapiro (2001a), ‘Navier–Stokes, fluid dynam-
ics, and image and video inpainting’, Proc. of ICCV, IEEE 1, I355–I362.

M. Bertalmio, L.-T. Cheng, S. Osher and G. Sapiro (2001b), ‘Variational prob-
lems and partial differential equations on implicit surfaces’, J. Comput. Phys.
174(2), 759–780.

M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester (2000), Image inpainting, in
ACM SIGGRAPH, ACM, pp. 417–424.

M. Bertalmio, L. Vese, G. Sapiro and S. Osher (2003), ‘Simultaneous structure and
texture image inpainting’, IEEE Trans. Image Process. 12(8), 882–889.

M. D. Betterton (2001), ‘Formation of structure in snowfields: Penitentes, suncups,
and dirt cones’, Phys. Rev. E 63, 05629-1-12.
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